Способы борьбы с вибрацией двс. Борьба с шумом и вибрацией на производстве. Меры по снижению распространения шума эспц в окружающую среду

Общими методами снижения вибрации являются;

Ослабление вибрации в источнике их образования за счет конструктивных, технологических и экспериментальных решений (технический метод);

Снижение интенсивности вибраций на пути их распространения (технологический метод);

Устранение причин возникновения вибрации в машинах и механизмах конструктивными и технологическими решениями является наиболее рациональной мерой (устранение дисбаланса, люфтов, зазоров, замена кривошипно-шатунных механизмов на кулачковые и т.д.). Ослабление вибрации в источнике их образования осуществляется при изготовлении оборудования.

Снижение интенсивности вибрации на пути распространения можно осуществить демпфированием, динамическим гашением и виброизоляцией.

Виброизоляция - способ защиты от вибрации, заключающийся в уменьшении передачи вибрации от источников возбуждения защищаемому объекту при помощи дополнительных устройств упругой связи - фундаментов и виброизоляторов, помещаемых между ними. Эта упругая связь может использоваться для ослабления передачи вибрации от основания на человека либо на защищаемый агрегат.

Виброизоляторы бывают пружинными, резиновыми и комбинированными. Пружинные виброизоляторы по сравнению с резиновыми виброизоляторами имеют рад преимуществ, так как могут применяться для изоляции как низких, так и высоких частот, а также дольше сохраняют упругие свойства. В случае пропускания виброизоляторами высших частот (из-за малых внутренних потерь сталей), их устанавливают на прокладки из резины (комбинированный виброизолятор). Цельные резиновые прокладки должны иметь форму ребристых или дырчатых плит для обеспечения деформации в горизонтальной плоскости.

Виброизоляция также осуществляется применением гибких вставок в коммуникациях воздуховодов, несущих конструкциях зданий, в ручном механизированном инструменте.

Основным показателем, определяющим виброизоляции машины, агрегата, установленной на виброизоляции с определенной жесткостью и массой, является коэффициент передачи или коэффициент виброизоляции. Он показывает, какая доля динамической силы или ускорения от общей силы или ускорения действующих со стороны машины, передается виброизоляторами фундаменту или основанию.

где f = ω/2π - частота возмущающей силы; в случае неуравновешенности ротора машины (электродвигателя, вентилятора и т.д.).

f =nm/60, где n - частота вращения, об/мин., m - номер гармоник (m = , 2, 3, …) могут бить и другие частоты возмущающих сил.

Частота собственных колебаний машины

где x c тат = mg/c - статическая осадка виброизолятора (пружины, резины) под действием собственной массы М машины, см. Ее можно определить – x c тат = g /(2πf 0)².

Чем больше статическая осадка, тем ниже собственная частота и тем эффективнее виброизоляция.

Изоляторы - амортизаторы начинают приносить эффект (КП<1)лишь при частоте возмущения f эф > f =

При f ≤ виброизоляторы передают полностью вибрации фундаменту (КП=1)или даже усиливают их (КП>1). Эффект виброизоляции тем выше, чем больше отношение f/f0.

Следовательно, для лучшей виброизоляции фундамента от вибрации машин при известной частоте возмущающей силы f необходимо уменьшить частоту собственных колебаний машины на виброизоляторах f 0 для получения больших отношений f/f 0 , что достигается либо увеличением массы машины [M], либо снижением жесткости виброизоляции "c". При известной же собственной частоте f 0 - эффект виброизоляции будет выше, чем больше возмущающая частота f по сравнению с частотой f 0 .

Виброизоляция будет эффективней, если фундамент, на котором монтируется агрегат, обладает достаточной массивностью. Это требование выполняется в тех случаях, когда выполняется условие

(f p 2 /f 2 - 1)M/4m > 10,

где fp - ближайшая к частоте вынуждающей силы собственная частота колебаний фундамента; М - масса фундамента (кг); m - масса изолирующего агрегата (кг).

Значение КП для эффективной изоляции колеблется в пределах 1/8 ¸ 1/6 при отношении вынужденной частоты к собственной частоте системы, равном 3 - 4.

Для изоляции человека от вибрирующего оборудования используют виброгашение. Под виброгашением понимают уменьшение уровня вибрации защищаемого объекта при введении в систему дополнительных реактивных сопротивлений. Чаще - это достигается при установке агрегатов на виброгасящие основания. Массу фундамента подбирают таким образом, чтобы амплитуда колебаний подошвы фундамента в любом случае не превышала 0,1-0,2 мм, а для особо ответственных сооружений - 0,005 мм.

Ослабление передачи вибрации на фундамент обычно характеризуется величиной виброизоляции (ВИ).

ВИ = ∆Z = Z 01 -Z 02 =

Но чаще в качестве критерия параметра вибрации используется амплитуда колебания. Она используется для ограничения вибрации агрегатов и фундаментов - определяет действующие динамические силы.

где знак "1" - относится к параметрам вибрации до мероприятий, а "2" - после мероприятий, после виброзащиты.

ВИ = ∆Z =

Если известен уровень колебательной скорости агрегата и нормированное значение уровня виброскорости Z норм, то можно определить потребную величину снижения логарифмического уровня виброскорости ∆Z = Z - Z нор.

Вибродемпфирование - вибропоглощение - процесс уменьшения уровня вибрации защищаемого объекта путем превращения энергии механических колебаний колеблющейся системы в тепловую энергию в процессе рассеяния энергии в окружающее пространство, а также в материале упругих элементов. Эти потери вызываются силами трения – диссипативными силами, на преодоление которых непрерывно и необходимо расходуется энергия источника вибрации.

Если рассеяние энергии происходит в вязкой среди, то диссипативная сила прямо пропорциональна виброскорости и носит название демпфирующей.

Вибродемпфирование заключается в уменьшении уровня вибрации защищаемого объекта за счет превращения энергии механических колебаний колеблющейся системы в тепловую.

связь между виброскоростью и вынуждающей силой, где F m - вынуждающая сила;

μ - коэффициент сопротивления, активная составляющая сопротивления вибрации;

(mω - с/ω)- реактивная часть сопротивления;

mω - инерционное сопротивление (масса на угловую частоту);

с/ω - упругое сопротивление (коэффициент жесткости на угловую частоту);

- механический импеданс системы.

Вибродемпфирование определяется коэффициентом сопротивления системы "μ", с изменением которого изменяется механический импеданс системы. Чем выше m, тем большего эффекта вибродемпферования можно достичь.

Для вибродемпфирования используются материалы с большим внутренним трением (пластмассы, дерево, резина и др.). На вибрирующие поверхности накосятся упруговязкие материалы - мастики.

Для борьбы с акустической вибрацией систем вентиляции и кондиционирования воздуха воздуховоды присоединяются к вентиляторам через гибкие вставки, при переходе через строительные конструкции на воздуховоды надеваются амортизирующие муфты и прокладки.

Вибродемпфирование осуществляется:

Путем изготовления колеблющихся объектов из материалов с высоким коэффициентом потерь, т.е. из композиционных материалов: двухслойных - "сталь-алюминий", из сплавов Cu – Ni, Ni – Co, а также на металле пластмассовые покрытия и т.д. Вибродемпфирующие материалы характеризуются коэффициентом потерь "η": сплавы "Cu - Ni" - 0,02-0,1; слоистых материалов - 0,15-0,40; резин, мягких пластмасс – 0,05 - 0,5; мастик - 0,3 - 0,45.

Нанесением на колеблющиеся объекты материалов с высоким коэффициентом потерь.

Действие таких покрытий основаны на ослаблении вибрации переводом колебательной энергии в тепловую при деформации покрытий.

Вибропоглащающие покрытия делятся на жесткие и мягкие покрытия.

Жесткие – рубероид, пластмасса, битомизированный войлок, стеклоизоляция.

Мягкие – мягкие пластмассы, резина, пенопластмассы.

Мастики – Антивибрит, ВД 17 – 58.

Динамическое гашение - виброгашение - ослабление колебаний посредством присоединения к системе дополнительных реактивных импедансов - дополнительная колебательная система, собственная частота, которой настроена, на основную частоту агрегата. В этом случае подбором массы и жесткости виброгасителя снижают вибрацию.

В направлении распространения вибрацию снижают, используя дополнительные устройства, встраиваемые в конструкцию машины, применяя демпфирующие покрытия, а также используя антифазную синхронизацию двух или нескольких источников возбуждения.

Средства динамического виброгашения по принципу действия подразделяются на динамические (пружинные, маятниковые, действующие в противофазе к колебательной системе) и ударные (пружинные, маятниковые - как глушители шума).

Динамическое виброгашение осуществляется также при установке агрегата на массивном фундаменте.

Виброгаситель жестко крепится на вибрирующем агрегате, поэтому в каждый момент времени возбуждаются колебания, находящиеся в противофазе к колебаниям агрегата.

Без учета трения должно выполняться условие:

где f - частота собственных колебаний машины (агрегата); f 0 - возбуждающаяся частота.

Недостатком динамического гашения является то, что гасители действует только по определенной частоте, соответствующей его резонансному режиму колебания: маятниковые или ударные виброгасители для гашения колебаний с частотой 0,4 - 2,0 Гц; пружинные - 2,0 - 10,0 Гц; плавающие – выше 10 Гц.

Чрезмерный шум оказывает вредное влияние на здоровье работающих, способствует возникновению травматизма и понижает производительность труда. Работа в условиях повышенного шума в течение всего рабочего дня вызывает утомление слуха. Длительное воздействие шума, превышающего допустимые нормы, приводит к потере слуха. Шум высоких тонов отрицательно влияет на органы, управляющие равновесием человека в пространстве. В практике наблюдались случаи травмирования из-за плохой слышимости сигналов транспортных и подъемно-транспортных средств.

Звук - волнообразно распространяющиеся колебания среды, вызываемые колебаниями тела. Интенсивность (сила) звука выражается в Вт/м 2 [эрг/(сек*см 2)]. За единицу звукового давления принята дин/см 2 , что соответствует 0,1 н/м 2 .

Ухо человека воспринимает звуки с частотой от 16-20 до 20000 Гц. Звуковые колебания с частотой менее 20-16 Гц называют инфразвуковыми, а колебания с частотой более 20000 Гц - ультразвуковыми.

Производственный шум представляет хаотическое сочетание комплексов простых звуков, вызывающих неприятное субъективное ощущение, особенно при шуме высоких тонов (лязг, скрип и т. д.).

Субъективное восприятие человеком громкости звуков находится в логарифмической связи с изменением силы звука. Это значит, что прч увеличении силы звука в 1000 000 раз органы слуха человека воспримут увеличение громкости звука только в 6 раз (закон Вебера-Фехтнера).

Для оценки громкости звуков была разработана международная шкала громкости в децибелах, в которой за нулевую точку принят порог слышимости, а за высшую точку шкалы - громкость, вызывающая в органах слуха ощущение боли. Громкость звука зависит от частоты колебаний, причем максимум звукового восприятия находится в диапазоне от 1000 до 4000 гц. В настоящее время в качестве единицы уровня громкости звука принят фон, который по величине равен децибелу при частоте в 1000 Гц.

Правильное нормирование предельно допустимой громкости производственного шума имеет важное значение. Установлено, что шум низкой частоты менее вреден, нежели шум средней, а тем более высокой частоты. Ленинградским институтом охраны труда предложена следующая характеристика -источников производственного шума и предельно допустимые уровни их громкости:

Производственные вибрации

Вибрации (сотрясения) - колебания тел с частотой менее 20-16 Гц. При повышении частоты колебаний вибрирующих тел возникает и шум.

Длительное воздействие сотрясений большой частоты и амплитуды вызывает вибрационную болезнь, поражающую нервно-мышечную и сердечно-сосудистую системы человека и ведущую к повреждению суставов. При этом может быть полная потеря трудоспособности.

Вредное воздействие вибраций на организм может быть общим и местным. Особую опасность представляет общее воздействие вибрации. По данным Московского института им. Эримана, тяжесть воздействия вибраций на организм человека определяется частотой и амплитудой колебаний.

По действующим санитарным правилам предельно допустимые амплитуды вибраций в зависимости от частоты колебаний при работе с ручным пневматическим или электрическим инструментом следующие:

На рисунке 2 дана схема прибора для измерения вибраций.


Рисунок 2. Схема прибора для измерения вибраций (виброграф ВР-1):
1,8 - рычаги; 2 - пружина; 3 - штифт; 4 - наконечник; 5 - катушка;
6 - пружина; 7 - ролик; 9 - реле времени; 10 - центробежный регулятор; 11 - секундные контакты; 12 - кулачок; 13 - рукоятка для завода пружины; 14 - пружина; 15 - лента для записи амплитуды колебаний

Мероприятия по борьбе с шумом и вибрациями

Эти мероприятия можно свести к следующим основным:

  • замене производственных процессов, вызывающих шум и вибрации, другими менее шумными процессами (например, замене машин ударного действия - молотов - прессами);
  • рационализации производственного оборудования (например, замене стальных сопрягающихся частей деталями, изготовленными из других материалов - пластмасс, текстолита и т. и., а также применением лучшей обработки и пригонки сопрягающихся частей оборудования);
  • устройству специальных фундаментов (рисунке 3), независимых от конструкций зданий и имеющих значительную массу и акустические швы; применению изолирующих прокладок и амортизаторов;
  • рациональному сопряжению воздухопроводов с воздуходувными машинами и креплению трубопроводов на опорах с амортизирующими прокладками;
  • применению специальных амортизирующих прокладок при креплении дисков пил для резки металла;
  • применению звукоизолирующих кожухов для закрывания особенно шумного оборудования или изоляции оборудования от производственных помещений;
  • применению глушителей шума при выпуске отработанных газов, пара, воздуха;
  • применению звукоизолирующих и звукопоглощающих материалов (бетонная стена поглощает только 0,5% шума, кирпичная 3,2%, а стена, обшитая войлоком толщиной 50 мм, - 70% шума);
  • использованию индивидуальных средств защиты от шума и вибраций (амортизирующие подставки, обувь с войлочными или резиновыми подошвами, антивибрационные рукавицы, антифоны для защиты органов слуха и т. п.).

А также проведению мероприятий гигиенического характера (например, при работе с вибрирующим инструментом - назначение кратковременных перерывов, душа и облучения ультрафиолетовыми лучами по окончании работы, выдача рабочим витаминов С и В 2).


Рисунок 3. Виброизолирующий фундамент:
1-фундамент под двигатель; 2-акустический шов; 3- акустический разрыв

Шум и шумопоглощение в электросталеплавильных цехах

Прежде чем приступить к анализу выделения и влияния шума, необходимо отметить, что различается два вида звукового сигнала: шум может быть физическим , когда он оказывает неблагоприятное влияние на здоровье человека (нервное расстройство, сонливость, переутомление); шум может быть субъективным , когда он успокаивает человека или доставляет удовлетворение. На различии этих понятий строятся регламентирующие нормы. Мы же разберем в дальнейшем методы снижения физического звукового сигнала. Кроме того, проблема шума должна рассматриваться в двух уровнях: в условиях здания цеха и в условиях завода на различных рабочих местах.

Для промышленно развитых зон допустимый уровень шума должен быть на уровне 70 дБ днем (с 7 до 20 часов), 60 дБ – ночью (22 – 6 часов) и 65 дБ – в промежутках.

В здании цеха рассматривается влияние шума на работающих в зоне действия шума уровнем до 85 дБ в течение 8 часов в день и 40 часов в неделю. Для такого режима (8 час. в день и 40 час. в неделю) уровень в 85 дБ принят как допустимый и 90 дБ как опасный уровень. Изменение времени пребывания в зоне шума в ту или другую сторону допускает уменьшение или увеличение уровня шума. Так, увеличение уровня шума на 3 дБ должно снизить время пребывания работающих в зоне в два раза. В зоне с уровнем шума 105 дБ рабочий не может находиться более 15 минут. Величина в 90 дБ принята как необходимость для реальных условий существующих цехов. Для новых цехов необходимо предусмотреть любые мероприятия, чтобы не превышать барьер в 85 дБ. Кроме того, этот предел может быть пересчитан в зависимости от частоты звука. Нужно учитывать, что частота опасна еще и тем, что не всегда ощущается человеком и может вызвать физиологическое отклонение вплоть до профессиональной глухоты.

При характеристике шума и изучении его влияния, прежде всего, необходимо установить исходную точку отсчета для измерений. В зависимости от метода измерения характеристики шума могут быть различными. Физическое измерение акустического сигнала состоит в определении уровня звукового давления L p , которое используется для выявления механизма выделения звука и выражается в децибелах (дБ).

Учитывая общие данные, связанные, в первую очередь, с физиологическим состоянием уха, вводят понятие кривой равновесия соответствующей восприятию ухом шума ниже 50 дБ. Значение в децибелах используется для характеристики более высокого шума, хотя было бы предпочтительнее использовать другие характеристики. Это равновесие значительно снижает звуковые составляющие с частотой менее 500 герц.

Таким образом, измерение шума в децибелах не дает полной картины для разрешения всех гигиенических проблем работы, особенно, если источником шума является малая дуговая печь, как источник незначительного шума. Кроме того, нужно учитывать распространение шума, как в пространстве, так и во времени. Пространственная эволюция шума позволяет воссоздать схему распространения шума с выделением опасных зон, или уточнить распространение звука. Временная эволюция шума используется, в основном, для статистического анализа, который позволяет определить L 5 ; L 10 … L 90 (где L n – уровень шума через n % времени). Средний уровень шума выражается через L экв и характеризует средний уровень во всех диапазонах частот.

Для общей характеристики влияния шума на состояние людей учитывают величину, называемую уровнем акустической эволюции или результирующий шум L p , который учитывает шумы всех тональностей и увеличивается на 5-10 дБ. В гигиене труда учитывают «дозу шума», которую получает индивидуум в течение определенного времени (например, 85 дБ в течение 8 часов).

Уровень звуковой мощности выражается уравнением:

L W = L I +10lgS.

Значимость источника шума характеризуется его мощностью, которая определяется как интеграл произведения интенсивности звука на соответствующую поверхность (S), окружающую источник шума. Иногда принимают, что L I =L n и путем аппроксимации вычисляют L W . Понятие звуковой мощности позволяет более достоверно оценить направление акустического потока и более целенаправленно решать проблемы шумозащиты.

В действительности шум это комплексный поток сигналов, который можно разложить на различные составляющие заданной частоты. Этот звуковой поток может быть оценен одним параметром – уровнем шума. Измерение усредненного спектра (в определенный период) в течении нескольких минут служит исходной информацией для последующего решения вопроса шумозащиты.

Проблему распространения шума можно рассматривать в трех основных аспектах:

  • распространение шума в цехе;
  • передача шума через стенку;
  • распространение шума в окружающее пространство .

Меры по снижению распространения шума ЭСПЦ в окружающую среду

Общий шум, производимый электросталеплавильным цехом, происходит от дуговой печи сверхвысокой мощности, скрапоразделочного цеха (склад металлолома), установок газоочистки, насосных станций, питающих печи водой, и достигает уровня 65 дБ на расстояние 500 м, хотя основным источником шума остается ДСП. Путем изоляции печного пролета или помещения печи в шумоизолирующий кожух можно понизить уровень шума на 20-30 дБ на рабочем месте.

Второе направление, касающееся снижения распространения шума включает:

  • улучшение акустической изоляции печи путем уменьшения сечения завалочных окон и устранения неплотности в технологических отверстиях;
  • полное или частичное изолирование печного пролета от соседних пролетов;
  • помещение печи в шумоизолирующий кожух.

Кроме того, обслуживающий персонал может быть защищен путем изоляции пульта управления печью и рабочих мест на других участках. Близлежащие селитебные районы могут быть защищены путем изоляции наружных стен электросталеплавильного цеха.

Для оценки эффективности различных мероприятий по снижению распространения шума в пространстве за базу принята сверхмощная дуговая электросталеплавильная печь вместимостью 100 т с трансформатором мощностью 75 МВ×А. Средний уровень шума, создаваемый ДСП на расстоянии 5 м от кожуха печи или 8 м от оси печи, во время плавления равен 110 дБ. Рассматривается 4 следующих варианта:

  1. обыкновенный электросталеплавильный цех, построенный 25-30 лет тому назад. Здание состоит из 3-х параллельных сообщающихся пролетов. Фасад здания не имеет шумозащитной изоляции. Множество открытых проемов здания ограничивает отражение звука, что благоприятно сказывается на общей звуковой обстановке в здании, но ухудшает шумовую обстановку вокруг здания;
  2. аналогичное здание, но плавильный пролет изолирован от других разделяющей стеной и благоприятствует изоляции плавильного пролета;
  3. в аспекте новых конструкторских разработок создан компактный пролет, кровля и стены которого изолированы и обработаны в плане шумоизоляции;
  4. здание цеха соответствует первому типу, но печь помещена в специальный шумозащитный кожух.

Акустические характеристики печных пролетов электросталеплавильного цеха

Рассматриваемые варианты Размеры, м Площадь наружной поверхности, м 2 a общий Примечание
Классический пролет 100х80х30 26800 0,20 Благоприятное влияние проемов на a
Классический пролет с разделительной стенкой 80х30х 11400 0,15 Только разделительн. стена имеет шумозащитную обработку
Компактный шумозащитный пролет 50х30х 7800 0,34 Стены и кровля имеют шумозащитное покрытие
Классический пролет, печь в шумозащитном кожухе 100х80х30, кожух 420 0,32 Кожух имеет шумозащитное покрытие

Как видно из таблицы, оборудование цеха дополнительно разделительной стеной не приводит к снижению распространения шума. Коэффициент a, определяемый как отношение поглощенной мощности к исходной мощности звука и характеризующий шумопоглощающее свойство, даже снижается. Два других варианта – помещение печи в шумоизолирующий кожух и изолирование всего пролета, дают практически одинаково положительные результаты.

Общими методами снижения вибрации являются;

ослабление вибрации в источнике их образования за счет конструктивных, технологических и экспериментальных решений (технический метод);

снижение интенсивности вибраций на пути их распространения (технологический метод);

Устранение причин возникновения вибрации в машинах и механизмах конструктивными и технологическими решениями является наиболее рациональной мерой (устранение дисбаланса, люфтов, зазоров, замена кривошипно-шатунных механизмов на кулачковые и т.д.). Ослабление вибрации в источнике их образования осуществляется при изготовлении оборудования.

Снижение интенсивности вибрации на пути распространения можно осуществить демпфированием, динамическим гашением и виброизоляцией.

Виброизоляция - способ защиты от вибрации, заключающийся в уменьшении передачи вибрации от источников возбуждения защищаемому объекту при помощи дополнительных устройств упругой связи - фундаментов и виброизоляторов, помещаемых между ними. Эта упругая связь может использоваться для ослабления передачи вибрации от основания на человека либо на защищаемый агрегат.

Виброизоляторы бывают пружинными, резиновыми и комбинированными. Пружинные виброизоляторы по сравнению с резиновыми виброизоляторами имеют рад преимуществ, так как могут применяться для изоляции как низких, так и высоких частот, а также дольше сохраняют упругие свойства. В случае пропускания виброизоляторами высших частот (из-за малых внутренних потерь сталей), их устанавливают на прокладки из резины (комбинированный виброизолятор). Цельные резиновые прокладки должны иметь форму ребристых или дырчатых плит для обеспечения деформации в горизонтальной плоскости.

Виброизоляция также осуществляется применением гибких вставок в коммуникациях воздуховодов, несущих конструкциях зданий, в ручном механизированном инструменте.

Основным показателем, определяющим виброизоляции машины, агрегата, установленной на виброизоляции с определенной жесткостью и массой, является коэффициент передачи или коэффициент виброизоляции. Он показывает, какая доля динамической силы или ускорения от общей силы или ускорения действующих со стороны машины, передается виброизоляторами фундаменту или основанию.

Частота возмущающей силы; в случае неуравновешенности ротора машины (электродвигателя, вентилятора и т.д.).

где n - частота вращения, об/мин., m - номер гармоник (m =, 2, 3, …) могут бить и другие частоты возмущающих сил.

Частота собственных колебаний машины

Статическая осадка виброизолятора (пружины, резины) под действием собственной массы М машины, см. Ее можно определить -

xcтат = g /(2рf 0)І.

Чем больше статическая осадка, тем ниже собственная частота и тем эффективнее виброизоляция.

Изоляторы - амортизаторы начинают приносить эффект (КП<1)лишь при частоте возмущения

При f ? виброизоляторы передают полностью вибрации фундаменту (КП=1)или даже усиливают их (КП>1). Эффект виброизоляции тем выше, чем больше отношение f/f 0 .

Следовательно, для лучшей виброизоляции фундамента от вибрации машин при известной частоте возмущающей силы f необходимо уменьшить частоту собственных колебаний машины на виброизоляторах f 0 для получения больших отношений f/f 0 , что достигается либо увеличением массы машины [M], либо снижением жесткости виброизоляции "c". При известной же собственной частоте f 0 - эффект виброизоляции будет выше, чем больше возмущающая частота f по сравнению с частотой f 0 .

Виброизоляция будет эффективней, если фундамент, на котором монтируется агрегат, обладает достаточной массивностью. Это требование выполняется в тех случаях, когда выполняется условие

(fp2/f 2- 1)M/4m > 10,

где fp - ближайшая к частоте вынуждающей силы собственная частота колебаний фундамента; М - масса фундамента (кг); m - масса изолирующего агрегата (кг).

Значение КП для эффективной изоляции колеблется в пределах 1/8 1/6 при отношении вынужденной частоты к собственной частоте системы, равном 3 - 4.

Для изоляции человека от вибрирующего оборудования используют виброгашение. Под виброгашением понимают уменьшение уровня вибрации защищаемого объекта при введении в систему дополнительных реактивных сопротивлений. Чаще - это достигается при установке агрегатов на виброгасящие основания. Массу фундамента подбирают таким образом, чтобы амплитуда колебаний подошвы фундамента в любом случае не превышала 0,1-0,2 мм, а для особо ответственных сооружений - 0,005 мм.

Ослабление передачи вибрации на фундамент обычно характеризуется величиной виброизоляции (ВИ).

ВИ = ?Z = Z01-Z02 =

Но чаще в качестве критерия параметра вибрации используется амплитуда колебания. Она используется для ограничения вибрации агрегатов и фундаментов - определяет действующие динамические силы.

где знак "1" - относится к параметрам вибрации до мероприятий, а "2" - после мероприятий, после виброзащиты.

Если известен уровень колебательной скорости агрегата и нормированное значение уровня виброскорости Zнорм, то можно определить потребную величину снижения логарифмического уровня виброскорости

Вибродемпфирование - вибропоглощение - процесс уменьшения уровня вибрации защищаемого объекта путем превращения энергии механических колебаний колеблющейся системы в тепловую энергию в процессе рассеяния энергии в окружающее пространство, а также в материале упругих элементов. Эти потери вызываются силами трения - диссипативными силами, на преодоление которых непрерывно и необходимо расходуется энергия источника вибрации.

Если рассеяние энергии происходит в вязкой среди, то диссипативная сила прямо пропорциональна виброскорости и носит название демпфирующей.

Вибродемпфирование заключается в уменьшении уровня вибрации защищаемого объекта за счет превращения энергии механических колебаний колеблющейся системы в тепловую.

связь между виброскоростью и вынуждающей силой, где Fm - вынуждающая сила;

м - коэффициент сопротивления, активная составляющая сопротивления вибрации;

(mщ - с/щ)- реактивная часть сопротивления;

mщ - инерционное сопротивление (масса на угловую частоту);

с/щ - упругое сопротивление (коэффициент жесткости на угловую частоту);

Механический импеданс системы.

Вибродемпфирование определяется коэффициентом сопротивления системы "м", с изменением которого изменяется механический импеданс системы. Чем выше, тем большего эффекта вибродемпферования можно достичь.

Для вибродемпфирования используются материалы с большим внутренним трением (пластмассы, дерево, резина и др.). На вибрирующие поверхности накосятся упруговязкие материалы - мастики.

Для борьбы с акустической вибрацией систем вентиляции и кондиционирования воздуха воздуховоды присоединяются к вентиляторам через гибкие вставки, при переходе через строительные конструкции на воздуховоды надеваются амортизирующие муфты и прокладки.

Вибродемпфирование осуществляется:

  • - путем изготовления колеблющихся объектов из материалов с высоким коэффициентом потерь, т.е. из композиционных материалов: двухслойных - "сталь-алюминий", из сплавов Cu - Ni, Ni - Co, а также на металле пластмассовые покрытия и т.д. Вибродемпфирующие материалы характеризуются коэффициентом потерь "з": сплавы "Cu - Ni" - 0,02-0,1; слоистых материалов - 0,15-0,40; резин, мягких пластмасс - 0,05 - 0,5; мастик - 0,3 - 0,45.
  • - нанесением на колеблющиеся объекты материалов с высоким коэффициентом потерь.

Действие таких покрытий основаны на ослаблении вибрации переводом колебательной энергии в тепловую при деформации покрытий.

Вибропоглащающие покрытия делятся на жесткие и мягкие покрытия.

Жесткие - рубероид, пластмасса, битомизированный войлок, стеклоизоляция.

Мягкие - мягкие пластмассы, резина, пенопластмассы.

Мастики - Антивибрит, ВД 17 - 58.

Динамическое гашение - виброгашение - ослабление колебаний посредством присоединения к системе дополнительных реактивных импедансов - дополнительная колебательная система, собственная частота, которой настроена, на основную частоту агрегата. В этом случае подбором массы и жесткости виброгасителя снижают вибрацию.

В направлении распространения вибрацию снижают, используя дополнительные устройства, встраиваемые в конструкцию машины, применяя демпфирующие покрытия, а также используя антифазную синхронизацию двух или нескольких источников возбуждения.

Средства динамического виброгашения по принципу действия подразделяются на динамические (пружинные, маятниковые, действующие в противофазе к колебательной системе) и ударные (пружинные, маятниковые - как глушители шума).

Динамическое виброгашение осуществляется также при установке агрегата на массивном фундаменте.

Виброгаситель жестко крепится на вибрирующем агрегате, поэтому в каждый момент времени возбуждаются колебания, находящиеся в противофазе к колебаниям агрегата.

Без учета трения должно выполняться условие:

где f - частота собственных колебаний машины (агрегата); f 0 - возбуждающаяся частота.

Недостатком динамического гашения является то, что гасители действует только по определенной частоте, соответствующей его резонансному режиму колебания: маятниковые или ударные виброгасители для гашения колебаний с частотой 0,4 - 2,0 Гц; пружинные - 2,0 - 10,0 Гц; плавающие - выше 10 Гц.

Описание.

Подтверждением этого служат следующие факторы: высокий удельный вес работников, занятых на рабочих местах, не отвечающих эргономическим и санитарно-гигиеническим требованиям и правилам техники безопасности; быстрый рост уровня профессиональной заболеваемости и производственного травматизма; увеличение тяжести производственного травматизма и его уровня с летальным исходом.

Выдержка из работы.

Введение …………………………………………………………………………… 3

1.Понятие о производственной вибрации ……………………………………….. 4

2.Действие вибрации на организм человека …………………………………….. 5

3.Нормирование и средства оценки вибраций ………………………………..…. 9

4.Методы и средства защиты от вибрации ……………………………………... 12

Заключение ……………………………………………………………………….. 15

Список литературы ………………………………………………………………. 16

Введение.

В условиях становления рыночной экономики проблемы безопасности жизнедеятельности становятся одним из самых острых социальных проблем. Связано это с травматизмом и профессиональными заболеваниями, приводящими в ряде случаев к летальным исходам, притом что более половины предприятий промышленности и сельского хозяйства относится к классу максимального профессионального риска.

Рост профессиональных заболеваний и производственного травматизма, числа техногенных катастроф и аварий, неразвитость профессиональной, социальной и медицинской реабилитации пострадавших на производстве отрицательно сказываются на жизнедеятельности трудящихся, их здоровье, приводят к дальнейшему ухудшению демографической ситуации в стране.

Подтверждением этого служат следующие факторы: высокий удельный вес работников, занятых на рабочих местах, не отвечающих эргономическим и санитарно-гигиеническим требованиям и правилам техники безопасности; быстрый рост уровня профессиональной заболеваемости и производственного травматизма; увеличение тяжести производственного травматизма и его уровня с летальным исходом.

1.Понятие о производственной вибрации

Вибрация - механические колебания механизмов, машин или в соответствии с ГОСТ 12.1.012-78 вибрацию классифицируют следующим образом.

По способу передачи на человека вибрацию подразделяют на общую, передающуюся через опорные поверхности на тело сидящего или стоящего человека, и локальную, передающуюся через руки человека.

По направлению различают вибрацию, действующую вдоль осей ортогональной системы координат для общей вибрации, действующую вдоль всей ортогональной системы координат для локальной вибрации.

По источнику возникновения вибрацию подразделяют на транспортную (при движении машин), транспортно-технологическую (при совмещении движения с технологическим процессом, мри разбрасывании удобрений, косьбе или обмолоте самоходным комбайном и т. д.) и технологическую (при работе стационарных машин)

Вибрация характеризуется частотой f, т.е. числом колебаний и секунду (Гц), амплитудой А, т.е. смещением волн, или высотой подъема от положения равновесия (мм), скоростью V (м/с) и ускорением. Весь диапазон частот вибраций также разбивается на октавные полосы: 1, 2, 4, 8, 16, 32, 63 125, 250, 500, 1000, 2000 Гц. Абсолютные значения параметров, характеризующих вибрацию, изменяются в широких пределах, по этому используют понятие уровня параметров, представляющего собой логарифмическое отношение значения параметра к опорному или пороговому его значению.

2. Действие вибрации на организм человека .

При работе в условиях вибраций производительность труда снижается, растет число травм. На некоторых рабочих местах в сельскохозяйственном производстве вибрации превышают нормируемые значения, а в некоторых случаях они близки к предельным. Не всегда соответствуют нормам уровни вибраций на органах управления. Обычно в спектре вибрации преобладают низкочастотные вибрации отрицательно действующие на организм. Некоторые виды вибрации неблагоприятно воздействуют на нервную и сердечно-сосудистую системы, вестибулярный аппарат. Наиболее вредное влияние на организм человека оказывает вибрация, частота которой совпадает с частотой собственных колебаний отдельных органов, примерные значения которых следующие (Гц): желудок - 2...3; почки - 6...8; сердце - 4...6; кишечник- 2...4; вестибулярный аппарат - 0,5..Л,3; глаза - 40...100 и т.д.

Воздействие на мускульные рефлексы достигает 20 Гц; нагруженное массой оператора сиденье на тракторе имеет собственную частоту вибрации 1,5...1,8 Гц, а задние колеса трактора - 4 Гц. Организму человека вибрация передается в момент контакта с вибрирующим объектом: при действии на конечности возникает локальная вибрация, а на все тело - общая. Локальная вибрация поражает нервно-мышечные ткани и опорно-двигательный аппарат и приводит к спазмам периферических сосудов. При длительных и интенсивных вибрациях в некоторых случаях развивается профессиональная патология (к ней чаще приводит локальная вибрация): периферическая, церебральная или церебрально-периферическая вибрационная болезнь. В последнем случае наблюдаются изменения сердечной деятельности, общее возбуждение или, наоборот, торможение, утомление, появление болей, ощущение тряски внутренних органов, тошнота. В этих случаях вибрации влияют и на костно-суставной аппарат, мышцы, периферийное кровообращение, зрение, слух. Местные вибрации вызывают спазмы сосудов, которые развиваются с концевых фаланг пальцев, распространяясь на всю кисть, предплечье, и охватывают сосуды сердца.

Тело человека рассматривается как сочетание масс с упругими элементами. В одном случае это все туловище с нижней частью позвоночника и тазом, в другом – верхняя часть туловища в сочетании с верхней частью позвоночника, наклоненной вперед. Для стоящего на вибрирующей поверхности человека существуют 2 резонансных пика на частотах 5…12 и 17…25 ГЦ, для сидящего на частотах 4…6 ГЦ. Для головы резонансные частоты находятся в области 20…30 Гц. В этом диапазоне частот амплитуда колебаний головы может превышать амплитуду колебаний плеч в 3 раза.Колебания внутренних органов, грудной клетки и брюшной полости обнаруживают резонанс на частотах 3,0...3,5 Гц.

Максимальная амплитуда колебаний брюшной стенки наблюдается на частотах 7...8 Гц. С увеличением частоты колебаний их амплитуда при передаче по телу человека ослабляется. В положении стоя и сидя эти ослабления на костях таза равны 9 дБ на октаву изменения частоты, на груди и голове - 12дБ, на плече -12...14 дБ. Эти данные не распространяются на резонансные частоты, при воздействии которых происходит не ослабление, а увеличение колебательной скорости.

В производственных условиях ручные машины, вибрация которых имеет максимальные уровни энергии (максимальный уровень виброскорости) в полосах низких частот (до 36 Гц), вызывают вибрационную патологию с преимущественным поражением нервно-мышечной ткани и опорно-двигательного аппарата. При работе с ручными машинами, вибрация которых имеет максимальный уровень энергии в высокочастотной области спектра (выше 125 Гц), возникают главным образом сосудистые расстройства. При воздействии вибрации низкой частоты заболевание возникает через 8... 10 лет, а при воздействии высокочастотной вибрации - через 5 лет и раньше. Общая вибрация разных параметром вызывает различную степень выраженности изменений нервно и системы (центральной и вегетативной), сердечнососудистой системы и вестибулярного аппарата.

В зависимости от параметров (частота, амплитуда) вибрация может как положительно, так и отрицательно влиять на отдельные ткани и организм в целом. Вибрацию используют при лечении некоторых заболеваний, но чаще всего вибрацию (производственную) считают вредно влияющим фактором. Поэтому важно знать граничные характеристики, разделяющие позитивное и негативное влияние вибрации на человека. Впервые на полезное значение вибрации обратил внимание французский ученый аббат Сен Пьер, который в 1734 г. сконструировал вибрирующее кресло для домоседов, повышающее мышечный тонус и улучшающее циркуляцию крови. В начале XX в. в России профессор Военно-медицинской академии А. Е. Щербак доказал, что умеренная вибрация улучшает питание тканей и ускоряет заживление ран.

Производственная вибрация, характеризующаяся значительной амплитудой и продолжительностью действия, вызывает у работающих раздражительность, бессонницу, головную боль, ноющие боли в руках людей, имеющих дело с вибрирующим инструментом. При длительном воздействии вибрации перестраивается костная ткань: на рентгенограммах можно заметить полосы, похожие на следы перелома - участки наибольшего напряжения, где размягчается костная ткань. Возрастает проницаемость мелких кровеносных сосудов, нарушается нервная регуляция, изменяется чувствительность кожи. При работе с ручным механизированным инструментом может возникнуть акроасфиксия (симптом мертвых пальцев) - потеря чувствительности, побеление пальцев, кистей рук. При воздействии общей вибрации более выражены изменения со стороны центральной нервной системы: появляются головокружения, шум в ушах, ухудшение памяти, нарушение координации движений, вестибулярные расстройства, похудение.

Основные параметры вибрации: частота и амплитуда колебаний. Колеблющаяся с определенной частотой и амплитудой точка движется с непрерывно меняющимися скоростью и ускорением: они максимальны в момент ее прохождения через исходное положение покоя и снижаются до нуля в крайних позициях. Поэтому колебательное движение характеризуется также скоростью и ускорением, представляющими собой производные от амплитуды и частоты. Причем органы чувств человека воспринимают не мгновенное значение параметров вибрации, а действующее.

Вибрацию часто измеряют приборами, шкалы которых отградуированы не в абсолютных значениях скорости и ускорения, а в относительных - децибелах. Поэтому характеристиками вибрации служат также уровень колебательной скорости и уровень колебательного ускорения. Рассматривая человека как сложную динамическую структуру с изменяющимися во времени параметрами, можно выделить частоты, вызывающие резкий рост амплитуд колебаний как всего тела в целом, так и отдельных его органов. При вибрации ниже 2 Гц, действующей на человека вдоль позвоночника, тело движется как единое целое. Резонансные частоты мало зависят от индивидуальных особенностей людей, так как основной подсистемой, реагирующей на колебания, являются органы брюшной полости, вибрирующие в одной фазе. Резонанс внутренних органов наступает при частоте З...3,5 Гц, а при 4...8 Гц они смещаются.

Если вибрация действует в горизонтальной плоскости по оси, перпендикулярной позвоночнику, то резонансная частота тела обусловлена сгибанием позвоночника и жесткостью тазобедренных суставов. Область резонанса для головы сидящего человека соответствует 20…30 Гц. В этом диапазоне амплитуда виброускорения головы может втрое превышать амплитуду колебаний плеч. Качество зрительного восприятия предметов значительно ухудшается при частоте 60…70 Гц, что соответствует резонансу глазных яблок.

Исследователи Японии установили, что характер профессии определяет некоторые особенности действия вибрации. Например, у шоферов грузовых машин широко распространены желудочные заболевания, у водителей трелевочных тракторов на лесозаготовках – радикулиты, у пилотов, особенно работающих на вертолетах, наблюдается снижение остроты зрения. Нарушения нервной и сердечнососудистой деятельности у летчиков возникают в 4 раза чаще, чем у представителей других профессий.

3. Нормирование и средства оценки вибраций.

Нормирование. Цель нормирования вибраций - предотвращение функциональных расстройств и заболеваний, чрезмерного утомления и снижения работоспособности. В основе гигиенического нормирования лежат медицинские показания. Нормированием устанавливают допустимую суточную или недельную дозы, предупреждающие в условиях трудовой деятельности функциональные расстройства или заболевания работающих.

Для нормирования воздействия вибрации установлены четыре критерия: обеспечение комфорта, сохранение работоспособности, сохранение здоровья и обеспечение безопасности. В последнем случае используются предельно допустимые уровни для рабочих мест.

Применительно к вибрациям существует техническое (распространяется на источник вибрации) и гигиеническое нормирование (определяет ПДУ вибрации на рабочих местах). Последнее ограничивает уровни вибрационной скорости и ускорения в октавных или третьоктавных полосах среднегеометрических частот.

При гигиенической оценке вибраций нормируемыми параметрами являются средние квадратичные значения виброскорости (и их логарифмические уровни) или виброускорения как в пределах отдельных октав, так и третьеоктавных полос. Для локальной вибрации нормы вводят ограничения только в пределах октавных полос. Например, когда устанавливают регулярные перерывы в течение рабочей смены при локальной вибрации, допустимые значения уровня виброскорости увеличивают.

При интегральной оценке по частоте нормируемым параметром является корректированное значение контролируемого параметра вибрации, измеряемое при помощи специальных фильтров. Локальную вибрацию оценивают, используя среднее за время воздействия корректированное значение.

Вибрацию, воздействующую на человека, нормируют для каждого установленного направления. Гигиенические нормы вибрации при частотном (спектральном) анализе установлены для длительности воздействия 480 мин. Гигиенические нормы в логарифмических уровнях среднеквадратических значений виброскорости для общей локальной вибрации в зависимости от категории (1,2, За, б, в, г) приведены в ГОСТ 12.1.012-78; там же указаны нормы при интегральной оценке по частоте нормируемого параметра. Эти значения положены в основу норм СН 245-71 и требований в рамках ССБТ.

Вибрацию классифицируют по следующим признакам: по способу воздействия на человека - общая и локальная; по источнику возникновения - транспортная (при движении машин), транспортно-технологическая (при совмещении движения с технологическим процессом, например при косьбе или обмолоте самоходным комбайном, рытье траншей экскаватором и т. п.) и технологическая (при работе стационарных машин, например насосных агрегатов);

по частоте колебаний - низкочастотная (менее 22,6 Гц), среднечастотная (22,6...90 Гц) и высокочастотная (более 90 Гц); характеру спектра - узко- и широкополосная; времени действия - постоянная и непостоянная; последнюю, в свою очередь, делят на колеблющуюся во времени, прерывистую и импульсную.

Нормы вибрации установлены для трех взаимно перпендикулярных направлений вдоль осей ортогональной системы координат. При измерении и оценке общей вибрации необходимо помнить, что ось X расположена в направлении от спины к груди человека, ось Y- от правого плеча к левому, ось Z- вертикально вдоль туловища. При измерении локальной вибрации следует учитывать, что ось Z нaпpaвлeнa вдоль ручного инструмента, а оси Х Y- перпендикулярно к ней.

Стандартом установлены нормы отдельно для транспортной вибрации (категория 1), транспортно-технологической (категория 2) и технологической (категория 3); причем нормы для третьей категории подразделены на подкатегории: За - для вибрации, действующей на постоянных рабочих местах производственных помещений; 3б - на рабочих местах складов, бытовых, дежурных и подсобных помещений, в которых отсутствуют генерирующие вибрацию машины; Зв -в помещениях для работников умственного труда.

Средства оценки. Вибрации измеряют виброметрами типов НВА-1 и ИШВ-1. Аппаратура НВА-1 в комплекте с пьезометрическими датчиками Д-19, Д-22, Д-26 позволяет определять низкочастотную виброскорость и виброускорения. Виброизмерительный комплекс представляет собой измерительный преобразователь (датчик), усилитель, полосовые фильтры и регистрирующий прибор. Контролируемые параметры - действующие значения виброскорости, ускорения или их уровней (дБ) в октавных полосах частот. Параметры вибрации определяют в том направлении, где колебательная скорость наибольшая.

4. Методы и средства защиты от вибрации.

Для защиты от вибрации применяют следующие методы: снижение виброактивности машин; отстройка от резонансных частот; вибродем- пфирование; виброизоляция; виброгашение, а также индивидуальные средства защиты.

Главными способами борьбы с вибрацией являются виброизоляция и вибропоглощение. В основу первого положено снижение передаваемой от машин и механизмов вибрации на основание путем размещения между ними упругих элементов или амортизаторов, а в основу второго - рассеивание энергии колебаний, покрытиями с большим внутренним трением.

Амортизаторы для изоляции от вибрации изготовляются из пружин, резиновых прокладок, в виде гидравлических или пневматических устройств, -а также их комбинации. При вертикальных колебаниях используются опорные или подвесные амортизаторы, а при одновременном действии вертикальных и горизонтальных колебаний - сочетание указанных амортизаторов, размещаемых как по вертикали, так и в горизонтальной плоскости. Обладающие высокой виброизолирующей способностью и долговечностью пружинные амортизаторы имеют небольшое внутреннее трение, в связи с чем плохо рассеивают энергию колебаний, затухание которых замедляется особенно в резонансном режиме при пуске и остановке машины.

Виброизолирующая способность резиновых амортизаторов ниже пружинных, но большое внутреннее сопротивление (коэффициент неупругого сопротивления) обеспечивает значительное снижение амплитуды собственных колебаний и времени их затуханий на резонансных режимах.

Для повышения устойчивости и уменьшения амплитуды колебаний машины ее следует монтировать на тяжелой металлической раме, чем достигается увеличение массы всей виброизолируемой системы, опирающей на виброопоры типа ОВ.

Для снижения вибрации ограждений, кожухов, транспортных и вентиляционных коммуникаций в резонансных режимах применяется вибропоглощение с помощью покрытий их поверхности материалами с большим внутренним трением (резина, пластики, мастики). Их наносят в местах максимальных амплитуд вибраций, определяемых по значениям виброскорости.

  1. Средства коллективной и индивидуальной защиты от шума и вибрации

Применяемые средства защиты от шума и вибрации подразделяются на средства коллективной защиты (СКЗ) и индивидуальной защиты (СИЗ).

Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок иагрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных и малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т.д.

Наиболее рациональным методом является борьба с шумом в источнике возникновения (уменьшение звуковой мощности Р). Причиной возникновения шумов могут быть механические, аэродинамические, гидродинамические и электромагнитные явления, обусловленные конструкцией и характером работы машин и механизмов, а также неточностями, допущенными в процессе изготовления и условиями испытания и эксплуатации. Для снижения шума в источнике возникновения могут успешно применяться следующие мероприятия: замена ударных механизмов и процессов безударными, например, замена ударной кленки сваркой, рихтовки - вальцовкой, использование гидропривода вместо кривошипно-шатунных и эксцентриковых приводов; применение малошумных соединений, например, подшипников скольжения,

косозубых, шевронных и других специальных зацеплений; применение в качестве конструкционных материалов с высоким внутренним трением, например замена металлических деталей пластмассовыми и другими «незвучащими» материалами; повышение требований к балансировке роторов; изменение режимов и условий работы механизмов и машин; применение принудительной смазки в сочленениях для предотвращения их износа и шума от трения. Важное значение имеет своевременное техническое обслуживание оборудования, при котором обеспечивается надежность крепления и правильное регулирование сочленений.

Комплекс мероприятий, направленных на уменьшение шума в источнике, может обеспечить снижение уровня звука на 10 - 20 дБ(А) и более.

1. Изменение направленности излучения. При проектировании установок с направленным излучением необходима соответствующая ориентация этих установок по отношению к рабочим местам, поскольку величина показателя направленности может достигать 10 - 15 дБ.Например, отверстие воздухозаборной шахты вентиляционной установки необходимо располагать так, чтобы максимум излучаемого шума был направлен в противошумную сторону от рабочего места или жилого дома.

2. Рациональная планировка предприятий и цехов. Шум на рабочем месте может быть уменьшен за счет увеличения расстояния от источника шума до расчетной точки. Внутри здания такие помещения должны располагаться вдали от шумных помещений так, чтобы их разделяло несколько других помещений. На территории предприятия более шумные цехи необходимо концентрировать в одном-двух местах. Расстояние между тихими помещениями (конструкторское бюро, заводоуправление) и шумными цехами должно обеспечивать необходимое снижение шума.

    Акустическая обработка помещений. Интенсивность шума в помещениях зависит не только от прямого, но и от отраженного звука, поэтому для уменьшения последнего применяют звукопоглощающие облицовки

поверхностей помещения и штучные (объемные) поглотители различных конструкций, подвешиваемые к потолку помещений. Процесс поглощения звука происходит путем перехода энергии колеблющихся частиц воздуха в теплоту за счет потерь на трение в пористом материале. Для большей эффективности звукопоглощения пористый материал должен иметь открытые со стороны падения звука и незамкнутые поры.

Уменьшение шума на пути его распространения применяют, когда перечисленные выше методы не обеспечивают требуемого снижения шума. Снижение шума достигается за счет уменьшения интенсивности прямого шума путем установки звукоизолирующих перегородок, кожухов, экранов и т.п. Сущность звукоизоляции ограждения состоит в том, что падающая на него энергия звуковой волны отражается в значительно большей степени, чем проходит за ограждение.

Рис. 1. Средства коллективной защиты от шума на пути его распространения

Для борьбы с вибрацией машин и оборудования и защиты работающих от

вибрации используют различные методы. Борьба с вибрацией в источнике возникновения связана с установлением причин появления механических колебаний и их устранением, например замена кривошипных механизмов равномерно вращающимися, тщательный подбор зубчатых передач, балансировка вращающихся масс и т.п. Для снижения вибрации широко используют эффект вибродемпфирования - превращение энергии механических колебаний в другие виды энергии, чаще всего в тепловую. С этой целью в конструкции деталей, через которые передается вибрация, применяют материалы с большим внутренним трением: специальные сплавы, пластмассы, резины, вибродемпфирующие покрытия. Для предотвращения общей вибрации используют установку вибрирующих машин и оборудования на самостоятельные виброгасящие фундаменты. Для ослабления передачи вибрации от источников ее возникновения полу, рабочему месту, сиденью, рукоятке и т.п. широко применяют методы виброизоляции. Для этого на пути распространения вибрации вводят дополнительную упругую связь в виде виброизоляторов из резины, пробки, войлока, асбеста, стальных пружин. В качестве средств индивидуальной защиты работающих используют специальную обувь на массивной резиновой подошве. Для защиты рук служат рукавицы, перчатки, вкладыши и прокладки, которые изготовляют из упругодемпфирующих материалов.

Важным для снижения опасного воздействия вибрации на организм человека является правильная организация режима труда и отдыха, постоянное медицинское наблюдение за состоянием здоровья, лечебно-профилактические мероприятия, такие как гидропроцедуры (теплые ванночки для рук и ног), массаж рук и ног, витаминизация и др. Для защиты рук от воздействия ультразвука при контактной передаче, а также при контактных смазках и т.д. операторы должны работать в рукавицах или перчатках, нарукавниках, не пропускающих влагу или контактную смазку.

Рис. 2. Классификация методов и средств защиты от вибрации

Средствами индивидуальной защиты от шума являются ушные вкладыши, наушники и шлемофоны. Эффективность индивидуальных средств защиты зависит от используемых материалов, конструкции, силы прижатия, правильности ношения. Ушные вкладыши вставляют в слуховой канал уха. Их изготовляют из легкого каучука, эластичных пластмасс, резины, эбонита и ультратонкого волокна. Они позволяют снизить уровень звукового давления на 10...15 дБ. В условиях повышенного шума рекомендуется применять наушники, которые обеспечивают надежную защиту органов слуха. Так, наушники ВЦНИОТ снижают уровень звукового давления на 7...38 дБ в диапазоне частот 125...8000 Гц. Для предохранения от воздействия шума с общим уровнем 120 дБ и выше рекомендуется применять шлемофоны, которые герметично закрывают всю околоушную область и снижают уровень звукового давления на 30...40 дБ в диапазоне частот 125...8000 Гц.

Средствами индивидуальной защиты работающего от воздействия общей вибрации применяют обувь с амортизирующими подошвами.

Общие технические требования на специальную виброзащитную обувь введены ГОСТ 12.4.024-76. Такую обувь изготовляют из кожи, искусственных, синтетических, текстильных материалов и комбинированной (из данных материалов). Она предназначена для защиты работающих от воздействия общей производственной вертикальной вибрации в диапазоне частот свыше 11 Гц и выпускается в виде сапог, полусапог и полуботинок мужских и женских. Она предназначена для индивидуальной защиты от вибраций и ударов энергией 5 Дж. Одновременно с защитой от вибраций спецобувь защищает ноги работающего от нетоксичной пыли и ударов энергией до 50 Дж (сапоги и полусапоги).

Применение специальной конструкции подошвы с использованием упругодемпфирующих материалов делает обувь эффективной при виброзащите.

Значительное внимание уделено защите рук от вибраций, мероприятия по которой изложены в ряде стандартов. Например, требования ГОСТ 12.4.002-74, ГОСТ 12.4.20-75 распространяются на средства индивидуальной защиты рук работающего от вибрации, защитные свойства которых обеспечиваются применением упругодемпфирующих материалов. Это могут быть рукавицы с упругодемпфирующими вкладышами; рукавицы и перчатки с мягкими наладонниками; упруго-демпфирующие прокладки и пластины для обхвата вибрирующих рукояток и деталей и т. п.

Эффективность этих средств определяется степенью снижения уровня вибрации, передаваемой на руки. Она равна разности уровней (или отношению абсолютных значений) колебательных скоростей при замере без применения средств индивидуальной защиты и с их использованием.

Защита от ультразвука включает в себя использование изолирующих корпусов и экранов, изоляцию излучающих установок, оборудование дистанционного управления, применение средств индивидуальной защиты.

Для локализации ультразвука обязательным является применение звукоизолирующих кожухов, полукожухов, экранов. Если эти меры не дают положительного эффекта, то ультразвуковые установки нужно размещать в отдельных помещениях и кабинах, облицованных звукопоглощающими материалами.

Наиболее распространенными средствами индивидуальной защиты при работе с ультразвуком являются противошумы. Для защиты рук от воздействия контактного ультразвука необходимо применять две пары перчаток - резиновые (наружные) и хлопчатобумажные (внутренние) или только хлопчатобумажные.

Требования по ограничению неблагоприятного влияния ультразвука на работающих включают следующее:

Запрещается непосредственный контакт человека с рабочей поверхностью источника ультразвука и с контактной средой. Для защиты рук от неблагоприятного воздействия контактного ультразвука в твердых, жидких, газообразных средах необходимо применять нарукавники, рукавицы или перчатки (наружные резиновые и внутренние хлопчатобумажные);

При систематической работе с источниками контактного ультразвука в течение более 50% рабочего времени необходимо устраивать два регламентированных перерыва - десятиминутный перерыв за 1-1,5 часа до и пятнадцатиминутный перерыв через 1,5-2 часа после обеденного перерыва для проведения физиопрофилактических процедур (тепловых гидропроцедур, массажа, ультрафиолетового облучения), а также лечебной гимнастики, витаминизации и т.п.;

Организационно-профилактические мероприятия заключаются в проведении инструктажа и установлении рациональных режимов труда и отдыха. К работе с ультразвуковыми источниками допускаются лица не моложе 18 лет, прошедшие соответствующий курс обучения. Лица, подвергающиеся в процессе трудовой деятельности воздействию контактного ультразвука, подлежат предварительным, при приеме на работу, и периодическим

медицинским осмотрам.

Снижение неблагоприятного воздействия инфразвука достигается комплексом инженерно-технических и медицинских мероприятий, из которых основными являются: ослабление инфразвука в его источнике, устранение причин воздействия; изоляцию инфразвука; поглощение инфразвука, постановку глушителей; индивидуальные средства защиты; медицинскую профилактику.

Борьба с неблагоприятным воздействием инфразвука должна вестись в тех же направлениях, что и борьба с шумом. Наиболее целесообразно уменьшать интенсивность инфразвуковых колебаний на стадии проектирования машин или агрегатов. Первостепенное значение в борьбе с инфразвуком имеют методы, снижающие его возникновение и ослабление в источнике.

Ультразвук представляет собою механические колебания упругой среды, распространяющиеся в ней. К ультразвуку относят колебания с частотой свыше 20000Гц, которые находятся выше порога слышимости и не воспринимаются человеческим ухом.Воздействие ультразвука на человека сопровождается структурными изменениями в головном мозге, вегетативных отделах центральной и периферической нервной системы, в стенках сосудов. Ультразвук широко применяется в медицине для лечения и диагностики, в различных областях техники и промышленности для анализа и контроля: дефектоскопия, структурный анализ вещества, определение физико-химических свойств металлов. Наиболее широкой областью использования ультразвука являются технологические процессы в промышленности: очистка и обеззараживание деталей, механическая обработка твёрдых и хрупких материалов, сварка, пайка, лужение, электролитические процессы, ускорение химических реакций и др.

Для защиты от ультразвука, который передается через воздух, применяется метод звукоизоляции. Ультразвуковые установки можно располагать в специальных помещениях.

Для защиты от ультразвука, который передается через воздух, применяетсяметод звукоизоляции. Ультразвуковые установки можно располагать в специальных помещениях. Эффективным средством защиты является использование кабин с дистанционным управлением, расположение оборудования в звукоизолированных укрытиях из звукопоглощающих материалов. Ультразвук, передающийся контактным путем, нормируется «Санитарными нормами и правилами».Для защиты от ультразвука, который передается через воздух, применяется метод звукоизоляции. Ультразвуковые установки можно располагать в специальных помещениях. Эффективным средством защиты является использование кабин с дистанционным управлением, расположение оборудования в звукоизолированных укрытиях.