Советы начинающим авиамоделистам-конструкторам. Основные понятия о аэродинмики

Source unknown

В архиве размещено описание легкого одноместного самолета оригинальной схемы.
Самолет носит название "Quickie".

Архив представляет собой отсканированную рукопись со схемами в формате Adobe PDF.

Хотя на первый взгляд, этот самолет кажется уж чересчур необычным и может вызвать недоверие, все же, прочитайте следуюший текст.
Это - выдержка из книги В.П.Кондратьева "Самолеты строим сами". Как следует из его слов, самолет построенный по такой схеме обещает очень даже хорошие характеристики.

Достоинства «утки» хорошо известны. Вкратце они сводятся к следующему, в отличие от нормальной схемы, у статически устойчивой «утки» подъемная сила горизонтального балансирующе-го оперения суммируется с подъемной силой крыла. Поэтому при тех же несущих свойствах площадь крыла можно, грубо говоря, уменьшить на величину площади оперения, в результате чего уменьшаются размеры, масса и аэродинамическое сопротивление самолета, а его аэро-динамическое качество растет (рис 97). Еще более выгодным является тандем, который по способу балансировки принципиально не отлича-ется от «утки», но позволяет создать еще более компактную машину. По сути дела, в тандемной компоновке общая несущая площадь разбивается на два равных или приблизительно равных крыла, линейные размеры которых примерно в 1,4 раза меньше аналогичного крыла самолета нормальной схемы.

Отрицательные же свойства «утки» связаны, прежде всего, с влиянием переднего крыла на заднее. Переднее скашивает вниз и подторма-живает воздушный поток, обтекающий заднее крыло, его эффективность падает (рис 98). Оптимальное решение этой проблемы в том, чтобы разнести как можно дальше крылья по длине фюзеляжа и по высоте. Для того чтобы заднее крыло не попадало в вихревой след переднего при полете на больших углах атаки, переднее крыло поднимают выше заднего или опускают его как можно ниже. Так сделано, в частности, на тандеме «Квики». Несоблюдение этого условия приводит к продольной неустойчивости на больших углах атаки.

Следует учитывать и еще одно условие. При полете на больших углах атаки перед сваливанием срыв потока должен наступать в первую очередь на переднем крыле. В противном случае самолет при сваливании будет резко задирать нос, и переходить в штопор. Это явление называется «подхват» и считается совершенно недопустимым. Способ борьбы с «подхватом» на «утке» найден давно: достаточно увеличить угол установки переднего крыла по отношению к заднему. Разница в углах установки должна составлять 2—3°, что гарантирует срыв потока в первую очередь на переднем крыле. Далее самолет автоматически опускает нос, переходит на мень-шие углы атаки и набирает скорость — таким образом, реализуется идея создания несваливаемого самолета, конечно, при соблюдении требуемой центровки.

..
Самолеты схемы тандем и их аэродинамические особенности :
Затенение заднего крыла передним при полете на больших углах атаки. 1 - малая интерференция в крейсерском полете на малых углах атаки; 2 - сильное затенение заднего крыла на больших углах самолета неудачной схемы, 3 - удачное расположение крыльев с малой интерференцией на больших углах атаки (m - коэффициент продольного момента отрицательный, наклон кривой xapaктepeн для устойчивого самолета, α - угол атаки)

Строительство тандемов носило эпизодический характер до тех пор. пока в 1978 г. все тог же неутомимый Рутан не продемонстрировал на слете конструкторов-любителей США в городе Ошкоше свой вызывающе «непонятный» тандем «Квики». Приступая к разработке этой машины, Рутан ставил задачу создания самолета с высокими летными характеристиками при двигателе минимально возможной мощности. Конечно, наилучшие результаты можно было по-лучить, используя тандемную схему. Действительно, два крыла площадью примерно по 2,5 м^2 позволили сделать самолет минимальных габаритных размеров с наименьшим аэродинамиче-ским сопротивлением и высоким аэродинамиче-ским качеством. При этом двигателя в 18 л. с. хватило для достижения скорости 220 км/ч, скороподъемности 3 м/с, потолка 4600 м. Взлетная масса самолета, изготовленного целиком из пластика, составляет 230 кг. Как и предыдущие творения Рутана, «Квики» был размножен любителями разных стран в десятках экземпляров. Американские авиационные специалисты считают «Квики» «минимальным» самолетом. Он экономичен, дешев и нетрудоемок в постройке. Производственный цикл его изготовления составляет всего 400 человеко-часов. Конструкторы-любители многих стран могут приобрести и чертежи, и набор заготовок, и полностью гото-вый аппарат.

Последователи Рутана нашлись и в нашей стране. На СЛА-84 куйбышевский самодеятельный клуб «Аэропракт», возглавляемый студентом Ю. Яковлевым, представил свой вариант «Квики» —А-8

Хороших самодеятельных клубов в нашей стране уже немало. Куйбышевский — один из самых известных. «Авиация на практике» — так члены клуба расшифровывают название своей «фирмы», созданной в 1974 г. в красном уголке заводского общежития выпускником Харьковского авиационного института Василием Мирошником. Судьба «Аэропракта» складывалась труд-но. Клуб неоднократно закрывался, «разгонялся», менял адреса и руководителей. Однако неудачи и трудности только закаляли молодых энтузи-астов.

За более чем пятнадцатилетнюю историю через «Аэропракт» прошли десятки человек — школьников, студентов, молодых рабочих, ставших впоследствии хорошими инженерами, конструкторами, летчиками. В традициях «Аэропракта» полная свобода технической мысли и демократия. В клубе всегда существовало не-сколько небольших творческих групп, параллельно строивших три-четыре летательных аппарата. А для самых смелых и «бредовых» технических идей всегда существовал лишь один судья — практика и собственный опыт. Именно такая атмосфера творческого сотрудничества н сорев-нования стала постоянным источником энтузи-азма, благодаря которому «Аэропракт» до сих пор существует. Именно такие условия дали возможность наиболее полно проявить талант наших лучших конструкторов-любителей, в том числе Василия Мирошника, Петра Альмурзнна, Михаила Волынца, Игоря Вахрушева, Юрия Яковлева и многих других — постоянных участ-ников и призеров слетов СЛА.

Самолеты, созданные в «Аэропракте», хорошо известны. Для того чтобы лучше представить масштабы деятельности «Аэропракта», достаточ-но лишь напомнить названия аппаратов этого клуба, принимавших участие в слетах СЛА. Сре-ди них — самолеты А-6, А-11М, А-12, гидросамолет А-05, планеры А-7, А-10Б и мотопланер А-10А, имеющие «фирменное» обозначение «А» и построенные в «филиале» «Аэропракта» — СКБ Куйбышевского авиационного института под руководством В. Мирошника. Почти все пере-численные летательные аппараты были призерами слетов.

Наибольший успех выпал на долю тандема А-8 («Аэропракт-8»), построенного студентом Куйбышевского авиационного института Юрием Яковлевым.

Внешне А-8 напоминает «Квики». Но надо отметить, что до тандема Ю. Яковлева у нас в стране об особенностях этой схемы было известно очень мало. Каким должно быть взаимное расположение крыльев и их профиль, где расположить центр тяжести самолета, как поведет себя машина при полете на больших углах атаки? На все эти вопросы можно было ответить, лишь испытав аппарат.

..
Самолет-тандем А-8 (Ю. Яковлев, "Аэропракт"). Площадь переднего крыла - 2,47 м2, площадь заднего крыла - 2,44 м^2, взлетная масса - 223 кг, масса пустого - 143 кг, максимальное аэродинамическое качество - 12, максимально допустимая скорость - 300 км/ч, максимальная эксплуатационная перегрузка - 6, разбег - 150 м, пробег - 150 м.
1 - двигатель, 2 - педали, 3 - воздухозаборник вентилятора кабины, 4 - узлы навески крыльев, 5 - тяги управления элеронами, 6 - элерон, 7 - тяги управления рулем направления и хвостовым колесом (трос в трубчатой оболочке), 8 - вал управления, 9 - парашют ПЛП-60, 10 - рычаг управления двигателем, 11 - бензобак, 12 - тяги управления рулем высоты, 13 - рукоятка запуска двигателя, 14 - резиновые амортизаторы подвески двигателя, 15 - руль высоты, 16 - боковая ручка управления, 17 - замок фонаря, 18 - выключатель зажигания, 19 - указатель скорости, 20 - высотомер, 21 - авиагоризонт, 22 - вариометр. 23 - акселерометр, 14 - вольтметр

А-8 построен был очень быстро, но летать стал не сразу. Попытка первого взлета на СЛА-84 в Коктебеле завершилась неудачей: после короткого разбега самолет скапотировал. Пришлось существенно сдвинуть назад центровку и изменить углы установки крыльев. Только после этих доработок зимой 1985 г. самолет смог подняться в воздух, демонстрируя все преимущества необычной аэродинамической компоновки. Компактность, малая смачиваемая поверхность и, как следствие, низкое аэродинамическое сопротивление, присущие самолетам такой аэродинамической схемы, позволили на А-8, оснащенном мотором мощностью 35 л. с, добиться максимальной скорости 220 км/ч и скороподъемности 5 м/с. Испытания, проведенные летчиком-испытателем В. Макагоновым, показали, что самолет легок и прост в; управлении, обладает хорошей маневренностью и не срывается в штопор. На тандеме успешно летали его создатели и профессиональные пилоты. Для читателей будет представлять интерес оценка, данная самолету В. Макагоновым:

— При выполнении пробежек на СЛА-84 у А-8 обнаружилась несбалансированность в продольном канале управления, вследствие которой на разбеге развивался значительный пикирующий момент от заднего крыла на скорости, меньшей скорости отрыва. Этот момент невозможно было компенсировать рулем высоты. Пос-ле слета задачу сбалансированного взлета аэропрактовцы решили путем уменьшения угла установки заднего крыла до 0°. Этого оказалось достаточно, чтобы на разбеге при полностью взятой на себя ручке управления скорость подъема хвостового колеса до взлетного положения и скорость отрыва практически совпадали. После отрыва самолет легко балансируется в продольном канале. Тенденции к развороту и кренеиию отсутствуют. Максимальная скороподъемность — 5 м/с получена на скорости 90 км/ч. В горизонтальном полете достигнута максимальная скорость 190 км/ч. Самолет охотно увеличивает скорость до 220 км/ч при незначи-тельном снижении и при выходе в горизонтальный полет долго удерживает ее. Очевидно, при более удачном подборе воздушного винта фиксированного шага скорость может быть и большей. Во всем диапазоне скоростей самолет устойчив и хорошо управляем, перекрестные связи в боко-вой динамике проявляются четко. При полностью выбранной на себя ручке управления и работе двигателя на малом газе на скорости 80 км/ч наблюдается срыв потока на переднем крыле, самолет немного опускает нос с последующим восстановлением обтекания и увеличением тангажа. Процесс повторяется в автоколебательном режиме с частотой 2—3 колебания в секунду с амплитудой 5—10°. Срыв нерезкий, поэтому динамика имеет плавный характер. Тенденций к кренению и развороту при срыве не наблю-дается. Зависимость усилий на ручке и педалях от их хода линейна с максимальными значениями усилий по элеронам и рулю, высоты не более 3 кг и по рулю направления не более 7—8 кг. На самолете применена боковая ручка управления, поэтому расходы ручки невелики. Самолет продемонстрировал хорошую маневренность. На скорости 160 км/ч вираж выполняется с креном 60°, а форсированный вираж со ско-рости 210 км/ч с креном 80°. Кистевое управление, кресло эргономической выгодной формы и отличный с точки зрения обзора фонарь создают достаточно комфортные условия полета.

Накануне СЛА-85 «Аэропракт» в очередной раз закрыли, и все летательные аппараты оказались в опечатанном помещении. Юрию Яковлеву и его друзьям пришлось приложить немало усилий, прежде чем А-8 и другие самолеты клуба были доставлены в Киев. Попав на слет с небольшим опозданием, А-8 сразу же привлек к себе внимание и зрителей, и специалистов, а великолепные полеты В. Макагонова во многом способствовали тому, что тандем стал одним из самых популярных самолетов слета. При подве-дении итогов А-8 признан лучшим эксперимен-тальным самолетом. Его автор был удостоен призов ЦК ВЛКСМ, журнала «Техника — молодежи» и ЦАГИ. По рекомендации технической комиссии слета решением Минавиапрома А-8 передан в ЦАГИ для продувок в аэродинами-ческой трубе, а затем в Летно-испытательный институт для более детальных исследований в полете. Главным же призом для Юрия Яковлева, конечно, стало приглашение работать в ОКБ имени О. К. Антонова.

А-8 изготовлен целиком нз пластиков. Перед-нее и заднее однолонжеронные крылья имеют примерно одинаковую конструкцию. Крылья сде-ланы отъемными, но разъемов по размаху не имеют. При стыковке крылья вкладываются в специальные вырезы фюзеляжа. Переднее крыло снабжено аэродинамическим профилем RAF-32 н установлено под углом +3°, заднее с профилем «Вортман» FX-60-126 установлено с углом 0°.

Лонжероны крыльев имеют стенку, изготовлен-ную из стеклоткани, и полки, выложенные из углеволокна. Обшивка крыльев трехслойная {стеклоткань — пенопласт — стеклоткань). При выклейке деталей и сборке агрегатов планера А-8 использованы различные эпоксидные клеи, в основном К-153.

Фюзеляж типа полумонокок также имеет трех-слойную пластиковую конструкцию. Он выклеен зацело с килем. Шассн состоит из двух колес от карта размером 300х100 мм, установленных в специальных обтекателях на концах переднего крыла, и стеклопластнкового рессорного костыля с управляемым хвостовым колесом размером 140х60 мм. Главные колеса снабжены механи-ческими тормозами. Роль амортизатора шасси выполняет само довольно упругое переднее крыло. В систему управления самолета входят: закрылок на переднем крыле, выполняющий функции руля высоты, элероны на заднем крыле и руль направления. Привод управления элеро-нами и рулем высоты выведен на боковую ручку с малыми ходами, при этом ручка летчика в по-лете лежит на специальном подлокотнике. Таким образом практически реализован принцип кисте-вого управления. Боковая ручка управления А-8 на слете получила высокую оценку всех пилотов.

На А-8 использован двигатель РМЗ-640 от снегохода «Буран». Мотор развивает мощность 35 л. с. при 5000 об/мин. Воздушный винт имеет диаметр 1,1 м и шаг 0,7 м. Максимальная стати-ческая тяга винта — 65 кг. Бензобак расположен в носовой части фюзеляжа под ногами пилота. Мотор рассчитан на использование бензина А-76.

Единственный вопрос меня больше всего беспокоит после прочитанного:
Какова была дальнейшая судьба самолета А-8?
Куда же исчез самолет А-8 из ассортимента производства на нынешнем "Аэропракте"?

На финальном этапе испытаний аэродинамической модели нового гражданского лайнера МС-21 в аэродинамической трубе ЦАГИ, модель была выполнена в масштабе - 1:8. В современной истории отечественного авиастроения испытания на такой крупной модели проводились впервые.

Аэродинамическая труба и компьютер

МС-21 полностью был спроектирован с помощью компьютеров на основе 3D-моделирования всех его компонентов. Это позволило анализировать и прогнозировать многие аспекты поведения самолёта с использованием современного программного обеспечения. Но продувки моделей в аэродинамических трубах не утратили своей актуальности, они на практике подтверждают многие компьютерные расчёты.

Первые испытания в аэродинамической трубе моделей гражданского лайнера для измерения нагрузок, действующих на агрегаты планера, начались ещё в 2011 году. Специально для этого в ЦАГИ изготовили аэродинамическую модель масштаба 1:14. Уже тогда конструкторы «Иркута» сопоставили предварительные расчёты с результатами продувок и убедились в их совпадении.

Размер имеет значение

Для финального этапа испытаний в аэродинамической трубе Т-104 специалисты «Иркута» и ЦАГИ решили использовать новую, ещё более детальную модель МС-21 масштаба 1:8.

Т-104 - одна из самых больших аэродинамических труб в стране, её диаметр - семь метров.

Выбранный масштаб позволил проводить измерения нагрузок на агрегатах, например, створках шасси, которые невозможно выполнить на более мелких моделях. Кроме того, на такую модель можно установить большее количество многокомпонентных тензовесов для измерения сил, воздействующих на аэродинамические поверхности и элементы механизации планера самолёта, в том числе, - на стойки и створки шасси, секции предкрылков и закрылков, элероны, оперение. Всего было установлено 20 тензовесов. Такое количество позволило существенно сократить число дорогостоящих пусков аэродинамической трубы, так как за одну продувку регистрировалась информация со всех датчиков.

Во время испытаний в 2014 году каждый час в Жуковском проходило по две-три серии продувок модели. Инженеры наблюдали, как ведёт себя модель на разных этапах полёта во взлётной, посадочной и крейсерской конфигурациях при разных углах атаки и скольжения. На финальном этапе испытаний в 2015 ЦАГИ сделало до 700 продувок крупномасштабной модели.

Испытания на столь крупных моделях гражданских самолётов не проводились в течение последних 20 лет, - говорит Геннадий Андреев, кандидат технических наук, начальник сектора отделения аэродинамики самолётов и ракет.

Создание такой крупной модели МС-21 позволило учесть некоторые факторы, связанные с масштабным эффектом, например, обледенение самолёта. На разных стадиях полёта в зависимости от климатических условий может образовываться ледяной покров от 2 до 76 мм.

В ЦАГИ, например, раньше и сейчас при продувке малых моделей самолёта использовались имитаторы льда, сделанные из дерева. Сегодня для крупномасштабных моделей и полумоделей имитаторы льда изготавливаются при помощи метода компьютерного моделирования из специального пластика.

Результаты продувок с повышенной точностью позволят в дальнейшем сократить время испытаний самолётов и снизить финансовые затраты, ведь тестовые полёты существенно дороже стендовых испытаний.

Отечественный опыт говорит о том, что востребованность в продувках моделей самолётов в аэродинамических трубах только увеличивается. Все большее количество отделов ЦАГИ переходит на двух, а иногда и трёхсменные режимы работы. Помимо традиционных заказчиков - военных, крупных иностранных компаний - всё больше работ выполняется для отечественных производителей гражданской техники.

По материалам журнала ОАК "Горизонты" №3, 2014 г.

Александр Марксович Гайфуллин

Авиастроение — важнейшая ветвь современной индустрии. Между самолётостроительными фирмами (включая связанные с ними научные институты) идёт состязание, цель которого — создание изделий, превосходящих аналоги конкурентов: для пассажирских и грузовых самолётов — по безопасности, экономичности, экологичности; для военных самолётов — по боевым качествам. Для исследований в современной авиационной науке свойственно использование адекватных математических моделей, основа которых — чёткое понимание физики
исследуемых явлений. Разработка и конструирование новых самолётов невозможны без применения «высокоматематизированных» наук, таких как аэродинамика, теория управления, прочность.

Аэродинамика — наука, изучающая взаимодействие воздушного потока и обтекаемого им тела. Скорость самолёта настолько велика, что обтекающий его поток становится турбулентным. Турбулентное течение отличается от «спокойного» ламинарного течения хаотическим изменением его характеристик по времени (скорости, давления и др.), приводящим к интенсивному перемешиванию газа, к возникновению вихрей. Основная математическая проблема турбулентности — создание системы дифференциальных уравнений в частных производных, которая бы описывала произвольные турбулентные течения и которую можно было бы решать на современных компьютерах, — до сих пор не решена. Поэтому в настоящее время на основе уравнений математической физики создаются полуэмпирические модели турбулентности, пригодные для описания лишь узкого класса течений.

Как определяются аэродинамические характеристики самолёта? В основном двумя методами: экспериментальным и расчётным. Для проведения экспериментальных исследований в аэродинамических трубах создают модели самолётов — уменьшенные в несколько раз копии оригиналов. Это связано с тем, что размеры аэродинамических труб не позволяют проводить испытания с реальными самолётами. Но данные, полученные на испытаниях модели в аэродинамической трубе, пересчитать в характеристики самолёта простым масштабированием, учётом коэффициента подобия модели и реального самолёта нельзя.

Дело в том, что уравнения, которым подчиняются характеристики течения, достаточно сложные. Если привести их к безразмерному виду, т. е. выразить все размерные величины в характерных для данного течения параметрах, то в уравнения войдут безразмерные величины, которые носят имена выдающихся учёных: число Маха, число Рейнольдса, число Струхала и др. Для строгого подобия необходимо, чтобы все эти величины совпадали при реальном полёте самолёта и при испытаниях модели в трубе. Но конкретные свойства воздушного потока, который используется в трубе, не позволяют выполнить все критерии подобия. Кроме того, и в случае закрытой, и в случае открытой трубы тот факт, что поток не безграничен, сказывается на аэродинамических характеристиках.

Возникает задача пересчёта с модели на натурный самолёт интегральных характеристик (суммарных сил и моментов) и распределённых характеристик (значения в конкретных точках давления, температуры и др.). Эта задача решается проведением численного расчёта уравнений математической физики для двух полуэмпирических моделей: самолёта в безграничном потоке и модели самолёта в аэродинамической трубе. Аэродинамические характеристики самолёта получают, добавляя к данным, полученным на испытаниях уменьшенной копии самолёта в аэродинамической трубе, разность однотипных данных, полученных для двух описанных полуэмпирических моделей.

Казалось бы, почему не произвести расчёт сразу, не прибегая к эксперименту? Дело тут в точности. Точность экспериментальных данных, полученных в хороших аэродинамических трубах, в несколько раз выше точности расчёта.

Основная формула аэродинамики — связь подъёмной силы, действующей на крыло, со скоростью движения и циркуляцией (интенсивностью) вихревой системы, порождаемой самолётом. Эта формула была получена «отцом русской авиации» профессором Н. Е. Жуковским и доложена им на заседании Московского математического общества в 1905 году.

Крыло самолёта должно быть оптимальным. Один из наиболее важных параметров крыла — его качество: так называют отношение подъёмной силы к силе сопротивления. Для создания оптимального («качественного») крыла решаются задачи вариационного исчисления.

Теория управления. Полёт самолёта состоит из нескольких фаз: взлёта, набора высоты, крейсерского движения, разворотов, снижения, посадки. На каждом этапе самолётом необходимо управлять. Закрылок на крыле или руль высоты на хвостовом оперении — примеры органов управления. Система управления должна быть сконструирована так, чтобы простые движения пилота в кабине передавались и доходили до органов управления, вызывая соответствующие реакции. С другой стороны, система должна быть достаточно «умной», элементы её конструкции не должны выходить за границы безопасного режима.

Ещё одна задача — создание автопилота, способного управлять движением самолёта без вмешательства лётчика.

За все эти проблемы отвечает математическая теория автоматического управления самолётом, базирующаяся в основном на теории дифференциальных уравнений. С помощью этой же теории создаётся математическая модель пространственного движения самолёта, исследуются вопросы устойчивости полёта.

Прочность. Мало создать самолёт с хорошими аэродинамическими данными, необходимо, чтобы он не разрушился в полёте, чтобы его ресурс (долголетие) был достаточно высок. За решение этой задачи отвечает наука, которая называется прочностью.

Методами прочности исследуются упругие и пластические деформации элементов конструкции самолёта, рост трещин в обшивке самолёта (в материале обшивки изначально присутствуют микротрещины, которые со временем могут расти), разрушение конструкции.

Математический арсенал для решения задач прочности включает классические и современные методы уравнений математической физики, дифференциальных уравнений, вариационного исчисления, комплексного анализа, вычислительных разделов линейной алгебры.

Каждый, кто видел в иллюминаторе, как ведёт себя крыло самолёта в полёте, замечал достаточно большую амплитуду его колебаний. Дело в том, что для уменьшения амплитуды колебаний крыла необходимо увеличивать его вес, а у самолёта вес конструкций пытаются минимизировать. Поэтому от колебаний крыла избавиться на удаётся. Раздел механики, изучающий задачи математической теории колебаний и резонанса, — аэроупругость.

Методы решения. Обсудим методы решения математических задач, о которых говорилось выше.

Определяющие уравнения в реальных задачах очень сложны и априори невозможно понять, что получится при их решении.

В сильно упрощённых с практической точки зрения задачах иногда удаётся получить точное решение.
Большинство таких задач уже решено, хотя до сих пор находят неизвестные ранее точные решения уравнений Навье—Стокса или Эйлера. Но набор таких задач ограничен, и они далеки от практически важных задач.

В то же время исследование этих задач очень важно, поскольку точные решения создают физические образы — вихрь, пограничный слой и т. п., — из которых строится физическая картина изучаемого процесса, как из элементарных кирпичиков строится дом. Полученное представление о физике процесса позволяет среди множества математических моделей выбрать такую, которая в достаточной степени отражает свойства моделируемого процесса и даёт возможность технического поиска решения.

Один из способов решения — численный. Часто численное решение задачи сводится к системе линейных алгебраических уравнений.

Ещё один способ возможен при наличии в задаче малого параметра. Таким параметром может быть отношение хорды (ширины) крыла к его размаху, отношение вязких сил к инерционным (отношение силы трения между слоями газа к силе инерции этих слоёв), отношение ширины трещины к её длине. К настоящему времени развиты %асимптотические методы решения задач с малым параметром, которые изучаются в математической теории возмущений.

Приведём как пример решение задачи о подъёмной силе крыла большого удлинения (отношение квадрата размаха к площади крыла). Здесь два малых параметра — отношение вязких сил к инерционным и отношение хорды крыла к его размаху.

Благодаря первому параметру решение задачи можно определять не из уравнений Навье—Стокса (моделирующих движение газа с учётом трения между слоями), а из уравнений Эйлера (трение между слоями газа отсутствует). Благодаря второму параметру, каждое сечение крыла обтекается так же, как обтекалось бы крыло бесконечного удлинения с профилем, соответствующим профилю крыла в данном сечении. Тем самым задача обтекания трёхмерного крыла трансформируется в ряд более простых задач о двумерном (плоском) течении около профилей крыла.

Итак, благодаря этим двум параметрам задача стала намного проще, чем изначальная.

Требования к самолётам постоянно ужесточаются — экологические и экономические, по безопасности полётов и по комфорту пассажиров. Самолёты совершенствуются, во многом — благодаря математическим достижениям, которые воплощаются в технические решения.

"На золотом крыльце сидели:

царь, царевич, король, королевич,

сапожник, портной.

Кто ты будешь такой?…"

(Детская считалка)

Те, у кого "Ногу свело", поют, что аквалангисты - это хорошо, что они любят нырять и купаться. Но любят ли они конструировать акваланги? А те, кто конструируют, любят ли они со своими аквалангами нырять - большой вопрос.

А что же моделисты?

Бытует мнение, что хороший авиамоделист - и конструктор, мастер на все руки, и летчик, и все в одном лице. При развитом социализме так оно и было. Но не сейчас. Сегодня можно с удовольствием заниматься только тем, чем больше нравится - много летать и чуть-чуть строить, или наоборот, много строить и чуть-чуть летать.

Тех, кто строит чуть-чуть, становится с каждым годом все больше и больше. В этом можно убедиться, посмотрев ассортимент ближайшего модельного магазина - Kit-ы пропадают, ARF прибывают. Спрос рождает предложение. Я не хочу думать о том, что модели превращаются в дорогие игрушки, а авиамоделизм - в специфический аттракцион. (Мне рассказывали случай, как некий "новый русский" забетонировал у себя на даче специальную полосу и в первый же полетный день вдолбил в нее пару тысяч долларов по самый хвост, на этом его увлечение авиамоделизмом закончилось.) Но тенденция превращения авиамоделизма (как массового явления) из ТЕХНИЧЕСКОГО ТВОРЧЕСТВА в спортивное развлечение, по-моему, налицо. Хорошо это или плохо - не знаю, посмотрим. Дальше я обращаюсь к тем, кто воспринимает авиамоделизм именно как творчество, и неважно, кто он больше: летчик или конструктор самолетов.

Не только мои многолетние наблюдения убеждают в том, что, как правило, те, кто строят хорошие самолеты - плохо летают, а те, кто хорошо летают, зачастую способны только на сборку ARF. По крайней мере, моделист, который бы сам сконструировал и изготовил классный самолет, а потом показывал бы на нем чудеса пилотажа - сегодня редкость. И если конструктор может стать очень приличным летчиком, то прирожденный летчик конструктором не станет. Одни строят, другие летают. Каждому свое. Разные это профессии. Бывают конструктора, бывают летчики, но конструктор и летчик в одном лице не бывает.

В поле одних от других отличить легко. Летчики стоят, задрав голову в небо, конструктора - "обнюхивают" самолеты.

Понимание того, кто же ты такой - конструктор или летчик, приходит не сразу, но приходит. Разберитесь в себе и действуйте соответственно. Если вы летчик - купите самолет, летайте и можете не слишком глубоко погружаться в дебри аэродинамики, если конструктор - специфические тонкости той или иной радиоаппаратуры будут вас интересовать постольку-поскольку и т.п.

Деньги есть? Тогда проходи…

"Зав. Складом: Какова же ваша цена?

Балбес: Триста тридцать!

Бывалый: Каждому!!"

(Сценарий)

Никакое хобби не обходится без материальных, т.е. денежных, вложений. Серьезное занятие любимым хобби требует серьезного вложения денег. У кого мало наличных, тот расплачивается своим временем, которое, в конечном счете, имеет тот же денежный эквивалент. Моделист, который говорит, что он сделал классный самолет за смешные деньги или врет, или совсем не ценит свой труд и свое время. У меня был такой случай. Один моделист, хвастался своим действительно хорошим самолетом. Долго рассказывал, какой хлам он взял, и какой замечательный получился результат. Я заметил, что, наверно, ему это дорого встало. Он сказал, что сущие пустяки, рублей 300...350. Однако на просьбу сделать из такого же хлама такую же конфетку за 700 рублей он рассмеялся мне в лицо и покрутил пальцем у виска. Он что, врал про 350 рублей? Да нет, просто к этим 350 рублям надо прибавить стоимость его труда и времени долларов на 300.

Как правило, опытный моделист будет заниматься восстановлением чужой модели или ради прикола, или если это крутое ретро, эксклюзив, повторить который нельзя, или за хорошие деньги, но никак не для собственного употребления. Точно так же, как часовщик не станет для себя восстанавливать часы из хлама. Он купит хорошие часы, тщательно отрегулирует их, и будет ухаживать за ними так, что они будут ходить долго и точно, как ни у кого другого.

Не гонитесь за кажущейся дешевизной, восстанавливая для себя чужие битые самолеты. Дороже обойдется. Вообще, RC авиамоделизм - хобби не из дешевых. Но если безденежный моделист-конструктор все равно будет строить самолеты из подножных материалов, то безденежный моделист-летчик очень скоро превратится в нудного, очкастого теоретика.

Потный вал вдохновения

"Пилите, Шура, пилите…"

("Золотой теленок")

Решено: модель своя, с нуля, по собственному проекту, заточенная на высокие летные характеристики и маневренность, т.е. попросту пилотажка. Подход к проекту на полном серьезе, по науке. Цель - создать оригинальный самолет с летными характеристиками лучшими, чем у известных моделей (или, по крайней мере, не хуже, чем у них).

Раскрыты нужные книжки на нужных страницах, запущены хитрые расчетные программы, одним словом, работа закипела. Схема, движок, компоновка. Предварительные главные размерения. Расчет весов. Нагрузка на крыло, профиль, поляра крыла и всего самолета (кто не знает поляра - зависимость между коэффициентами лобового сопротивления и подъемной силы крыла). Опять главные размерения. Продольная устойчивость, крен, рысканье, рангаж. Опять главные размерения. Скорость, рули, элероны. Опять главные размерения. Конструкция, прочность, технология. Опять расчет весов, нагрузка на крыло, профиль, поляра, устойчивость... и по кругу. С каждым циклом очертания самолета все более вырисовываются и... сначала смутно, а потом все более отчетливо что-то напоминают. Наконец ты понимаешь, что разработал Экстру! Ну, хвостик чуть другой, ну кабинка... , но все равно Extra (туды ее в качель)! За что боролись?! Изменив очертания и форму, чтобы непохоже было, пересчитываешь и понимаешь, что летать будет хуже, чем та же Экстра. С аэродинамикой не поспоришь. Все. Крушение надежд удивить мир. А затраченные усилия? А время, которое - деньги?

Зачем я это рассказываю? Чтобы руки отбить? Да нет, любой моделист-конструктор (не важно, самолетчик или яхтсмен), хоть один раз в жизни изобретал велосипед (или пропеллер). Это нормально. Просто я хочу дать пару советов молодым - горячим конструкторам.

Ставьте себе реальные планы. Как ни печально, но надо смириться с тем, что почти все уже придумано до нас. Конечно, это "почти" греет душу, дает, так сказать, надежду, но... Оптимальные аэродинамические схемы и компоновки, например, для тех же пилотажных моделей под ДВС придуманы давно, проверены и перепроверены не одним поколением конструкторов. Для революции нет революционной ситуации. Воздушная среда - она и есть воздушная среда, силовая установка на основе ДВС настолько вылизана, что плюнуть некуда, разве что с глушителем поиграть. Поэтому прежде чем хвататься за разработку самолета с чистого листа, оглядитесь вокруг, наверняка отыщется прототип (известный и проверенный), отвечающий вашему замыслу.

Какой марки первый самолет?

В советских авиамодельных кружках у начинающих моделистов первая модель, в обязательном порядке, была какая-нибудь схематичка. Придя во Дворец Пионеров и школьников на Ленинских горах (звучит-то как: Дворец, Пионеры, Ленин...) в авиамодельный кружок в секцию кордовых моделей, я уже имел за плечами кое-какой опыт в постройке успешно летающих моделей. Но мне все равно дали резиномоторную схематичную модель самолета. Я был страшно разочарован - такую фигню можно было и дома сделать. Было это в середине 60-х. Теперь я понимаю, что по-другому и быть не могло. Руководитель кружка не мог рисковать дефицитными материалами, не будучи уверенным, что у начинающего моделиста руки растут из правильного места. Бедные кружководы были зажаты государственным финансированием и отчетностью. В кружках ставка делалась на 2... 3-х проверенных ребят, которые "съедали" львиную долю бюджета кружка. Остальным вынуждено доставалась роль статистов. Чтобы прорваться в круг избранных, надо было проявить незаурядные способности. Это была мечта каждого кружковца. Жесточайшая конкуренция, вызванная глобальным дефицитом всего, заставляла добиваться приличных результатов при минимуме ресурсов, и случайных людей в моделизме практически не было. У неорганизованных моделистов выбор прототипа определялся не столько опытом, сколько доступом к дефицитным материалам. Деньги, как таковые, почти ничего не решали. Есть материалы - строился хороший сложный самолет, нет - делался самолет попроще.

Времена изменились. Дефицита практически нет (по крайней мере, в Москве). Строй что хочешь. Одно осталось неизменным, как раньше, так и сейчас: выбор прототипа для постройки модели производится на пределе материальных возможностей - раньше в смысле дефицитных материалов, сегодня в смысле денег. Мнение, что начинать надо непременно с "Картоныча", я не разделяю. Ерунда все это. Мне известен моделист, который свой первый полет совершил на дорогущем пилотажном биплане, весьма непростом в управлении. И ничего, не разбил, научился летать. Все дело в ответственности, в серьезной предварительной подготовке на симуляторе. Вообще самолет, на котором летаешь, должен нравиться, его должно быть жалко разбить. Так что подсчитайте ваши денежки и закладывайтесь на все что есть, по полной программе. Как при выборе автомобиля - никто не купит подержанные Жигули, если есть деньги на Мерседес, даже при полном отсутствии навыков езды.

Аэродинамика для чайников

"А все почему?.. И по какой причине?..

И какой из этого следует вывод?"

(Монолог ослика Иа.)

И все же, с чего начать? Как грамотно выбрать прототип?

Критерии выбора прототипа лежат на прочном фундаменте аэродинамической теории моделей самолета. В 99 случаях из 100 начинающий моделист сначала строит самолет и даже не один, а уж потом начинает изучать теорию - жизнь заставляет. Призывать делать наоборот бесполезно. Почувствовав в себе тягу к небу, будущий моделиста чувствует и настоящий зуд нетерпения - скорее в небо, хоть на чем! Тут не до книжек. И только получив кайф от первых полетов (кто не помнит восторг и ликование в душе от первого поднятого в небо самолета?), отдышавшись и задумавшись о следующей модели, моделист приходит к выводу, что неплохо было бы что-нибудь поизучать.

Модель должна лететь ровно при брошенных ручках управления продолжительное время, не срываясь в штопор и не заваливаясь на крыло не только в полный штиль, но и при возмущениях воздуха. Т.е. она должна обладать продольной, поперечной и путевой устойчивостью.

Продольная устойчивость

На продольно неустойчивом самолете летать невозможно, это факт. Но и слишком большая продольная устойчивость не всегда благо. Например, излишняя устойчивость делает полет самолета вялым, а энергичные фигуры получаются "сонными". Наиболее зрелищные фигуры - плоский штопор snap roll и многие другие 3D фигуры вообще невозможно выполнить на самолете с излишней продольной устойчивостью. Такие субъективные оценки, как "шустрая" или "тупая" модель тоже в основном связаны с продольной устойчивостью. Это важнейшая характеристика самолета. Четкое понимание ее природы, а так же владение методами, позволяющими управлять параметрами продольной устойчивости - залог не только успешного строительства новых моделей, но и гарантия грамотной, безаварийной эксплуатации готовых самолетов.

Продольная устойчивость определяется взаимным положением центра тяжести (ЦТ) модели и ее фокуса, т.е. точки приложения равнодействующей аэродинамических сил, действующих на ВСЕ части самолета. Для обычной, традиционной схемы модели, ее фокус определяется главным образом фокусом крыла (т.е. точкой приложения равнодействующей аэродинамических сил действующих на крыло, или, по-другому - центром давления). А положение фокуса крыла в свою очередь напрямую зависит от его профиля и углов атаки. Таким образом, с одной стороны - центровка самолета, с другой - профиль его крыла и эффективность хвостового оперения - вот, по большому счету, альфа и омега продольной устойчивости модели.

Теперь подробнее.

Очевидно, что если ЦТ находится впереди фокуса - модель продольно устойчива (в полете создается устойчивое равновесие). Правда, слишком передняя центровка приводит к снижению аэродинамического качества модели, да еще при этом может не хватить эффективности стабилизатора для компенсации пикирующего момента - самолет просто не взлетит. А если взлетит, то при посадке на малых скоростях обязательно "клюнет" носом если не с летальным исходом, то с большими неприятностями для стоек шасси, капота и пропеллера.

Если ЦТ находится позади фокуса, то в принципе модель - неустойчива. Однако в определенном диапазоне центровок - от совпадающей с фокусом до некоторой задней, самолет продолжает быть продольно устойчивым за счет демпфирующего момента стабилизатора.

Еще более задняя центровка представляет особый интерес. Такая модель крайне неустойчива в полете и пилот управлять ею без специальных технических средств не может. Однако применение систем стабилизации на основе гироскопов позволяет не только летать на таких самолетах, но и получать при этом заметные преимущества в выполнении фигур пилотажа. Характерно, что на турнире чемпионов (ТОС) в Лас-Вегасе большинство участников использовали электронную стабилизацию для изменения коэффициента устойчивости в полете на разных фигурах. Но это тема отдельного разговора.

Чувствуете, куда я клоню? Все по законам жанра: очень задняя центровка - никуда не годится, очень передняя - тоже не сахар, значит...

Действительно, оптимальная величина продольной устойчивости достигается, если ЦТ лежит вблизи фокуса модели с небольшим запасом (ЦТ может менять свое положение в полете, например при расходе топлива, при уборке - выпуске шасси и т.д.). Остается выяснить, где находится фокус модели, который, как мы договаривались, для обычных схем в большой степени зависит от фокуса крыла.

Фокус крыла определяется центром давления его профиля, который в общем случае не стоит на месте. Его положение в той или иной степени зависит от относительной кривизны и угла атаки. Проще всего с профилям, близкими к симметричным. У них центр давления, как правило, находится на 25% САХ (средней аэродинамической хорды) и практически не зависит от угла атаки. К примеру, у профиля NACA 2415 (относительная кривизна 2% на 40% длины хорды, относительная толщина 15%) в диапазоне углов атаки от 4 до 18 град. центр давления практически не изменяет своего положения и отстоит от носка профиля на расстояние, соответствующее 25% САХ. У профиля CLARK YH, отличающегося несколько большей кривизной, в том же диапазоне углов атаки перемещение центра давления еще вполне приемлемо. Для профиля же с 6% -ной относительной кривизной (кроме того, еще и довольно тонкого) это перемещение весьма заметно.

Существуют профили, у которых центр давления вообще не перемещается. Однако на моделях они практически не используются (кроме аппаратов типа "летающее крыло"), т.к. их аэродинамические качества значительно ниже, чем у обычных профилей.

Кроме того надо заметить, что использование механизации крыла, например, посадочных щитков, создающих эффект увеличения кривизны профиля, даже у профиля NACA 2415 приводит к заметному изменению положения центра давления.

Изменение положения центра давления профиля явление весьма неприятное. Механизм тут простой. При оптимальном взаимном расположении ЦТ и фокуса модели в строго горизонтальном полете (ЦТ вблизи фокуса с небольшим запасом), модель нормально устойчива. При изменении угла атаки центр давления профиля начинает перемещаться (не в лучшую сторону), взаимное расположение ЦТ и фокуса - изменяется, и мы сразу вторгаемся в область центровок позади фокуса, т.е. в область неустойчивости. Как было упомянуто, размер области задних центровок, где модель продолжает быть продольно устойчивой, напрямую зависит от эффективности стабилизатора, которая пропорциональна произведению площади стабилизатора на квадрат его плеча, что прослеживается в конструкциях "длиннохвостых" пилотажек.

В принципе, надежная продольная устойчивость модели обеспечена, если площадь ее горизонтального оперения составляет 25% площади крыла, а расстояние между этим оперением и крылом соответствует примерно 2,5 средней хорды крыла. Приведенные соотношения учитывают практически все неблагоприятные факторы, влияющие на устойчивость.

Известна номограмма, с помощью которой по геометрическим характеристикам прототипа можно определить параметры его продольной устойчивости, характеризуемые коэффициентом продольной устойчивости.

К - коэффициент продольной устойчивости;
А = S оп / S кр - отношение площади горизонтального оперения к площади крыла;
L = L пл / h - отношение расстояния от крыла до горизонтального оперения к средней хорде крыла.

В целом можно сказать:

  • Продольная устойчивость недостаточна при ее коэффициенте ниже 45;
  • При коэффициенте продольной устойчивости от 45 до 55 должны быть предприняты все возможные мероприятия по ее улучшению;
  • Продольная устойчивость достаточна при коэффициенте от 55 до 65;
  • При коэффициенте выше 65 можно не применять профили с неизменным положением центра давления в широком диапазоне углов атаки;
  • При коэффициенте выше 75 можно использовать профили с относительной кривизной до 5%;
  • При более высоких значениях допустимо практически без опаски снизить продольную устойчивость.

Улучшить стабилизирующий эффект горизонтального оперения можно, использовав для него симметричный профиль относительной толщины около 12%. У радиоуправляемых моделей с действующим рулем высоты определенное повышение подъемной силы, а значит и большее стабилизирующее действие, может быть достигнуто уменьшением зазора между рулем и оперением. При меньшем зазоре распределение давления по определению лучше, особенно при отклонении руля. Действие горизонтального оперения зависит также от удлинения крыла и его положения относительно крыла. Однако эти параметры имеют подчиненное значение, с их помощью нельзя радикально улучшить устойчивость модели. Большое удлинение крыла оказывает такое же воздействие, как отнесение горизонтального оперения в зону, удаленную от спутной струи крыла, как, например, при использовании Т-образного оперения.

Напомню, что до сих пор мы говорили об обычных схемах самолета - прямое (или трапеция) крыло, хвостик, фюзеляж. Я плохо себе представляю моделиста, который для своего первого самолета выбрал бы схему "утка". Тем не менее для полноты картины, наверное, стоит упомянуть и другие схемы.

Продольную устойчивость модели со стреловидным крылом можно улучшить круткой крыла. Здесь возможна как чисто геометрическая (максимум до 4 град.), так и аэродинамическая крутка. В последнем случае речь идет о переходе несущего корневого профиля к симметричному профилю на законцовке крыла. Получила распространение комбинация обеих круток, благодаря которой кроме улучшения продольной устойчивости эффективно снижается индуктивное сопротивление. Крутка крыла широко применялась на планерах-бесхвостках схемы "чайка".

Продольная устойчивость на самолетах схемы "утка" тоже определяется взаимным положением ЦТ и фокуса крыла, однако демпфирования от переднего стабилизатора нет, а центровки применяются очень передние.

Продольная устойчивость бесхвосток достигается применением специальных профилей с т.н. S-образной средней линией. У таких профилей центр давления так же перемещается при изменении угла атаки, но в противоположную сторону.

Особняком стоят бипланы и другие многокрылые аппараты. Проблемы их устойчивости выходят за рамки настоящей статьи. Нельзя объять необъятное, как говаривал Козьма Прутков.

Поперечная и путевая устойчивость

Известно, что поперечная устойчивость модели взаимосвязана с путевой. Поэтому рассматривать их нужно в комплексе. Сразу оговоримся, большая поперечная устойчивость нужна учебным и свободнолетающим самолетам. Для пилотажек и продвинутых тренировочных моделей поперечная устойчивость должна быть нулевая. Путевая (курсовая) устойчивость тоже не должна быть слишком высокой. Чрезмерное ее значение препятствует вхождению в штопор, который вырождается в спираль, кроме того, при большом значении путевой устойчивости и ненулевом V крыла, поперечная устойчивость самолета ухудшается.

Для повышения поперечной устойчивости используют несколько конструктивных приемов. Это может быть получение устойчивости за счет поперечного V крыла. Тут лучше всего дело обстоит с высокопланами, т.к. у них центр тяжести лежит ниже фокуса, т.е. создается устойчивое равновесие. Кроме того, на высокопланах часто применяется фюзеляж с большой боковой поверхностью. У большинства низкопланов вследствие неустойчивости положения центра тяжести необходимо увеличивать угол поперечного V крыла модели.

Применение стреловидных крыльев тоже повышает поперечную устойчивость. Поперечная устойчивость дельт-бесхвосток обусловлена именно стреловидностью крыла.

Что касается путевой устойчивости, то в общем случае считается, что модель будет иметь достаточную путевую устойчивость, если площадь киля составляет 10% площади крыла, а расстояние между ними соответствует 2,5 средним хордам крыла. Если киль расположен на том же расстоянии, что и горизонтальное оперение, как это в большинстве случаев и бывает, то площадь киля принимают равной 1/3 площади этого оперения. При таком соотношении площадей путевая устойчивость вполне достаточна.

Еще кое-что о профилях

Несмотря на громадный выбор, в авиамоделизме реально используется чуть больше двух десятков профилей. Вот некоторые из них. Профили от NACA 0009 до NACA 0018 являются симметричными, а поскольку их относительная толщина составляет от 6 до 12%, они применяются, прежде всего, для поверхностей хвостового оперения. "Классические" для пилотажных моделей профили имеют относительную толщину от 16 до 18%. Профили NACA 23009 - NACA 23018 являются полусимметричными, они широко используются не только на моделях, но и на настоящих самолетах. Центр давления у них изменяет свое положение незначительно. По-настоящему универсальным можно назвать полусимметричный профиль CLARK Y. Его можно применять как на радиоуправляемых, так и на свободнолетающих моделях. Симметричные же профили могут считаться профилями с неизменным положением центра давления, однако, к сожалению, они развивают небольшую подъемную силу и при больших углах атаки склонны к неожиданным срывам потока без заметного перехода.

У профиля EPPLER 374 максимальная толщина отнесена далеко к задней кромке, вследствие чего его обтекание остается ламинарным в широких пределах. Он применяется преимущественно на скоростных моделях, а также на тяжелых планерах. Изменение положения центра давления у него довольно значительно.

Профиль крыла следует выбирать таким, чтобы изменение положения центра давления было минимальным. При этом предполагается, что профиль горизонтального оперения симметричен. Если необходим хорошо несущий профиль с неизменным в широких пределах положением центра давления, то следует выбирать NACA M6 или CLARK YH.

Вот и все. На первый случай этих сведений вполне достаточно, чтобы, так сказать, "въехать в тему", поддержать умный разговор с моделистами, и главное, грамотно выбрать прототип для будущей модели. Я намеренно избегал сложных расчетов по хитрым формулам. Моделист, который в душе конструктор, сам к ним придет, а летчику достаточно навскидку определить, с чем он имеет дело.

Вот он - грамотный прототип

Так вот, опираясь на вышеизложенное, попробуем представить, как может выглядеть модель для первоначального обучения пилотированию. Скорее всего это будет высокоплан с удлиненным фюзеляжем, развитыми горизонтальным оперением и килем, профилем крыла CLARK YH и, если c элеронами, то с небольшим поперечным V, а если без элеронов, то с поперечным V побольше.

А теперь посмотрите на "Картоныча"...

Дальше дело за вами. Можно, взяв за основу геометрию "Картоныча", сделать цельнобальзового красавца (если есть деньги и время), можно попытаться сконструировать аппарат из доступных материалов (если денег маловато), можно этого самого "Картоныча" купить (если времени нет), если нет ни времени, ни денег - бросьте заниматься авиамоделизмом. Говоря: взять за основу геометрию самолета, я имею ввиду главные размерения, соотношение площадей, веса, профили и т.п. Внешний облик, а тем более, конструкция, материалы могут быть любые. Здесь есть простор для творчества. Кроме того, можно улучшить летные характеристики модели методами, о которых упоминалось выше.

Мало ли кто что напридумывал...

"Не верю..."

(К. Станиславский)

При внесении изменений в прототип бережно относитесь к аэродинамической схеме. Если изменяете ее, то проводите проверочные расчеты.

Типичный случай. Некий моделист заявляет: "Я такой самолет уже делал. Летает безобразно. Болтается, как... в проруби". Странно, самолет известный. Начинаешь выяснять, в чем дело. Оказывается, при внесении изменений в прототип под свою технологию и материалы он изменил профиль крыла - чуть-чуть. Не понравилось, что рулевая машинка выступает за плоскость. Ему и невдомек, что из предусмотренного профиля CLARK YH у него получился профиль близкий к EPPLER375, у которого при углах атаки в диапазоне от 4 до 25 градусов центр давления перемещается в довольно широких пределах. Чтобы модель с крылом такого профиля имела достаточную продольную устойчивость, ее горизонтальное оперение должно быть намного более эффективным. Улучшить стабилизирующий эффект горизонтального оперения можно было бы, использовав для него симметричный профиль относительной толщины около 12%. Подъемная сила, развиваемая таким профилем, примерно на 10% больше, чем у плоского, который применяется для простоты изготовления. Но моделист не был конструктором, он был летчиком.

Вообще, изменения, вносимые в прототип должны преследовать вполне определенные четко сформулированные цели - ради чего менять. Нельзя улучшить прототип вообще. Можно улучшить внешний вид, но тогда надо быть готовым к тому, что самолет станет более трудоемким, а значит, дороже. Или наоборот, подчинить изменения простоте изготовления и уменьшению стоимости, но тогда, возможно, он потеряет изящность, а всем известно, что некрасивые самолеты плохо летают. Замена материалов - чревата серьезными конструктивными переделками силовой схемы и, как правило, увеличением веса аппарата. И т.д. Опытные моделисты доводят модель годами, улучшая ее постепенно, от образца к образцу приближаясь к оптимуму. И если взять такую модель за прототип и начать курочить… Хорошие конструкторские решения никогда не лежат на поверхности. Не считайте себя заведомо умней разработчика прототипа. Если вам кажется, что какой-то узел можно сделать проще и лучше, то постарайтесь понять, а почему же автор сделал по-другому? Если уверены в своей правоте - делайте по-своему. Потом, возможно, вы поймете, в чем было дело, да будет поздно.

Совет начинающим. Если вы решили сами сделать модель (особенно если это ваша первая модель), стройте самолет по известному, проверенному прототипу, лучше из посылки. Не пытайтесь сразу вносить в прототип существенные изменения. Стройте модель, как она есть. Это даст вам возможность прощупать ее в буквальном смысле слова, понять идею, заложенную автором в модель. Вполне возможно, что в процессе постройки к вам будут приходить мысли по модернизации, улучшению и т.д. Мой совет - воздержитесь от немедленного претворения их в жизнь, лучше запишите и используйте в процессе постройки следующей модели, когда за прототип вы возьмете уже построенный вами самолет.

Кстати, вариации на тему того или иного прототипа - обычная практика моделистов. Как правило, строится ряд моделей имеющих одного предка с последовательно вносимыми изменениями. Зачастую последняя модель напоминает исходную лишь отдаленно. Иногда в ряду получается выдающийся самолет (не обязательно последний), он-то и становится прототипом для самолетов других моделистов. Не надо понимать разработку темы буквально, как постройку ряда однотипных самолетов подряд (хотя и такое бывает, у спортсменов например). Обычно у моделиста находится в разработке несколько тем. Между экземплярами моделей в ряду может пройти не один год. И все-таки, каким бы опытным моделист ни был, открывая новую тему, он старается сделать первый образец, по возможности строго следуя прототипу "как он есть".

"- А есть такой же, но без крыльев?

Будем искать..."

(Бриллиантовая рука)

Многие начинающие моделисты хотят начать с постройки если не точной копии, то, по крайней мере, модели похожей на настоящий самолет. Что можно сказать по этому поводу? Да ради бога! Если не получится, то вы просто потеряете деньги и время, но зато реально оцените свои силы и приобретете опыт, который тоже дорогого стоит. У настоящего моделиста неудача (а от неудач никто не застрахован) не отобьет охоты заниматься любимым хобби. Однако конструирование модели-копии имеет особенности, о которых следует упомянуть.

Одним из параметров подобия модели и ее прототипа является равенство для них чисел Рейнольдса. С достаточной точностью это число равно Re = 70vh , где v - скорость полета, м/с; h - хорда крыла, мм.

Например, для спортивного самолета, у которого хорда крыла равна 1500 мм, скорость полета - 100 м/с (360 км/ч) Re = 70х100х1500 = 10500000. Для модели этого самолета, выполненной в масштабе 1:10, хорда крыла равна 150 мм, скорость 10 м/с (36км/ч) получаем число Рейнольдса Re = 70х10х150 = 105000, т.е. в 100 раз меньше. Такая разница исключает прямой перенос аэродинамических характеристик с прототипа на модель.

Вообще, убеждение, что точное копирование геометрии прототипа, обладающего высокими летными качествами, обеспечит хорошие летные характеристики модели, опасное убеждение. Практика показывает прямо противоположное. Лишь в немногих случаях точная копия отвечает специфическим требованиям к аэродинамике модели, в частности к ее устойчивости. Поэтому при громадном разнообразии типов и конструкций самолетов, выбор прототипа для модели является не простой задачей. Именно поэтому авиамодельные фирмы для своих серийных моделей-копий используют всего полтора-два десятка прототипов. Мало того, чтобы самолет, модель которого хочется построить, нравился. Как правило, при ближайшем рассмотрении простой расчет по номограмме показывает, что устойчивость модели будет явно недостаточна. Что делать? Ответ очевиден - улучшить устойчивость модели, например, удлинить фюзеляж, изменить соотношение площадей, развить хвостовое оперение, увеличить поперечное V крыла и т.д. Правда, может получиться так, что после проведения всех этих мероприятий модель окажется мало похожей на свой прототип.

И наконец, это уже мое личное мнение, какой выбрать самолет? Пусть меня назовут пещерным русофилом, но я никогда не буду строить фашистский Fw-190. Тем более что замечательных русских самолетов, хорошо летающих и красивых, очень много. Тут вообще непаханое поле для моделиста. Кроме того, приятно выйти в поле с нашим самолетом, когда все вокруг летают на импортных серийных аппаратах. Характерно, что наши самолеты, например, времен 2-й мировой войны, отлично масштабируются с минимальными искажениями, их конструкцию зачастую можно впрямую переложить на модель. Но окончательный выбор, конечно, за вами. Вам строить, вам и летать.

От автора

Огромную помощь в написании главы об основах аэродинамики автору оказал наш коллега, Владимир Васильков, за что ему большое спасибо. Практически это наша совместная работа, где вклад соавтора больше, чем мой.

Номограмма и некоторые другие примеры взяты из книги Р. Вилле "Постройка летающих моделей копий" пер. с нем. В.Н. Пальянова.

Цель. Углубить знания по авиации и авиационной технике, развить и закрепить навыки изготовления моделей.

Методическое рекомендации. Кружковцы уже приобрели известные навыки при изучении темы 8, да и схематическая модель самолета (объект практической работы) во многом похожа на модель планера. На данную тему рекомендуется отвести 44 ч, из них на теоретические занятия не более 4-6 ч. В зависимости от степени подготовленности учащихся и, исходя из условий кружка, руководитель может в некоторых пределах изменять общее число часов, а также время на практические и теоретические занятия.

При изучении темы необходимо охватить следующие вопросы: устройство, назначение и типы самолетов, составление рабочих чертежей схематической модели самолета, изготовление и запуски моделей.

На первом занятии следует кратко рассказать об истории создания первого самолета А. Ф. Можайского и дальнейшем развитии самолетостроения. Затем, используя иллюстрации или модель-копию, объяснить устройство самолета и его основных частей. При демонстрировании схематической модели самолета указать, в чем сходство и различие между натуральным самолетом и его моделью.

На втором занятии рассказывают о типах и назначении самолетов. Затем руководитель объясняет условие возникновения подъемной силы крыла самолета и на конкретных примерах знакомит кружковцев с элементами расчета, выбором схем и основных геометрических данных модели. Желательно сопровождать объяснение показом готовых моделей. В заключение составляют эскизы будущих моделей. В основном все модели должны отличаться друг от друга формой, размерами и т. д. Учитывая опыт, который кружковцы приобрели при вычерчивании эскизов схематической модели планера, надо предоставить им большую самостоятельность. Так, рабочие чертежи можно разрешить выполнять дома. Однако разбирать эскизы и чертежи рекомендуется в кружке.

На третьем занятии после заготовки реек приступают к изготовлению моделей.

Последующие занятия целесообразно проводить по такой схеме: 10-15 мин - сообщение теоретического материала, затем закрепление его практической работой и в заключение 10-15 мин - подведение итогов.

Желательно организовать экскурсию в авиационный музей, на аэродром, ознакомить ребят с самолетом в натуре.

Завершают занятия по теме запуском изготовленных моделей и проведением соревнований.

На теоретической части занятий необходимо сообщить следующее. В авиационной технике существуют три принципа создания подъемной силы: аэростатический, аэродинамический и реактивный.

По аэростатическому принципу сконструированы аппараты легче воздуха - воздушные шары, аэростаты, дирижабли. Подъемная сила у них возникает за счет наполнения оболочки газом легче воздуха.

Аэродинамический принцип возникновения подъемной силы возможен лишь при движении крыла в воздушной среде (аппараты тяжелее воздуха - планеры, самолеты, вертолеты).

На высотах более 25 км и в безвоздушном пространстве могут летать только аппараты, у которых подъемная сила образуется по реактивному принципу - за счет отдачи вытекающих газов. Образцы таких летательных аппаратов - ракеты и космические корабли. Не следует относить к ним реактивные самолеты: на них установлены реактивные двигатели, но подъемная сила создается крылом.

Самый распространенный летательный аппарат тяжелее воздуха - самолет.

Существуют военные и гражданские самолеты, отличающиеся не только формой, размерами, массой, но и назначением.

К военным самолетам относятся истребители, бомбардировщики, перехватчики, ракетоносцы и др.

Истребители предназначены для уничтожения самолетов противника в воздухе, обладают большой скоростью и маневренностью. Бомбардировщики - самолеты, сбрасывающие бомбы на войска противника, его укрепления, аэродромы, военно-промышленные предприятия в тылу врага. Если истребители - одноместные машины, то экипаж бомбардировщика состоит из 6-8 человек. В военной авиации применяют также самолеты транспортные и связи.

В период Великой Отечественной войны для уничтожения с воздуха живой силы и техники противника служили штурмовики. Лучшим штурмовиком периода Великой Отечественной войны был Ил-2 конструктора С. В. Ильюшина.

Самолеты гражданской авиации бывают пассажирские, грузовые, специального назначения, санитарные, спортивные.

Помимо деления на гражданскую и военную, различают авиацию сухопутную и морскую (гидроавиацию). У гидросамолетов для взлета и посадки на воду предусмотрены поплавки или корпус в виде лодки.

Все самолеты должны иметь обтекаемую форму, уменьшающую их сопротивление, и возможно меньшую массу, благодаря чему самолет берет больше полезного груза. Удобство эксплуатации и обслуживания, технологичность, т. е. быстрое и относительно недорогое изготовление, простота ремонта являются также важнейшими требованиями к конструкции самолетов.

Важнейшая часть самолета - крыло, создающее подъемную силу. Крылья разных самолетов отличаются размерами, формой, положением относительно фюзеляжа, профилем (так называется форма сечения крыла в плоскости, перпендикулярной размаху). Кренят крыло непосредственно к фюзеляжу или соединенному с ним центроплану.

По форме профиля крылья бывают выпукло-вогнутые, плосковыпуклые, симметричные, двояковыпуклые, несимметричные, S-образные.

По толщине различают профили тонкие, средние и толстые.

Относительную толщину профиля определяют по формуле

Где - относительная толщина профиля, %; с - толщина профиля; b - длина хорды крыла.

Если меньше 8%, профиль называют тонким, = 8 - 13% - средним, > 13% - толстым.

Крыло летящего самолета омывается встречным потоком воздуха. При обтекании верхней выпуклой поверхности скорость потока возрастает, и здесь образуется область пониженного давления. Под крылом частицы воздуха, наоборот, притормаживаются и давление повышается. Эта разность давлений и создает подъемную силу Y (рис. 22), которая всегда направлена перпендикулярно набегающему потоку.

Перед передней кромкой образуется зона повышенного давления, а за задней кромкой - зона незначительно пониженного давления, где происходит мелкое вихреобразование. Эта разность давлений вместе с силой поверхностного трения воздуха о крыло вызывает силу лобового сопротивления X, которая совпадает с направлением скорости и противоположна направлению полета. Равнодействующая R подъемной силы Y и силы лобового сопротивления X называется полной аэродинамической силой крыла. Самолет с одним крылом называется монопланом, а с двумя крыльями, расположенными одно над другим, бипланом (например, Ан-2).

Конструкция крыла зависит от назначения самолета, степени и характера нагрузок в полете.

Самые простые крылья плоские, обтянутые полотном. Ферма - силовая часть крыла, состоит из лонжеронов, связанных нервюрами и расчалками. Такие крылья делают для самолетов, обладающих скоростями до 300 км/ч: учебно-тренировочных, спортивных и специального применения.

Крылья бывают разной формы (трапециевидной, стреловидной и т. д.). У более сложных крыльев главный силовой элемент - жесткая и прочная обшивка. Обшивку крыла усиливают изнутри продольные элементы - стрингеры и поперечные - нервюры. Такая обшивка называется работающей.

Элероны - это небольшие рули на консолях крыла, отклоняющиеся одновременно в разные стороны (один вверх, другой вниз); они служат для создания крена.

Закрылки похожи на элероны, но они отклоняются только вниз на 15-60°; при этом изменяется кривизна профиля крыла, что вызывает возрастание подъемной силы.

Щитки - еще более простое средство увеличения подъемной силы крыла; они расположены под крылом, вдоль задней кромки и отклоняются вниз.

На некоторых самолетах для кратковременного повышения сопротивления применяют воздушные тормоза в виде интерцепторов на верхней части крыла, а также щитков в хвостовой части фюзеляжа. Они служат для уменьшения посадочной скорости и пробега после посадки.

Фюзеляж - корпус самолета, в котором размещают людей, приборы, грузы. К нему крепят крыло, оперение, двигатель и шасси. Обычно фюзеляж имеет плавную обтекаемую форму.

К оперению относятся стабилизатор, руль высоты, киль, руль направления.

Стабилизатор - небольшая поверхность, чаще неподвижная, обеспечивающая продольную устойчивость самолета. Если под влиянием каких-либо причин самолет повернется вокруг поперечной оси, сила давления встречного потока на стабилизатор вернет его в прежнее положение. Равновесие вокруг поперечной оси будет восстановлено. Если же летчику понадобится самому повернуть самолет относительно той же оси, он использует руль высоты, установленный на шарнирах на стабилизаторе. Пилот управляет рулем высоты, передвигая ручку управления или штурвал, связанный с рулем тросами или тягами.

Киль - вертикальная неподвижная поверхность, выполняющая роль стабилизатора только относительно вертикальной оси, т. е. он обеспечивает путевую устойчивость самолета.

Нажимая ножные педали в кабине самолета, летчик действует на руль направления, крепящийся к килю на шарнирах. При движении вперед правой педали (левая при этом перемещается в обратном направлении) нос самолета поворачивается вправо, при нажатии левой педали - влево.

С ростом скоростей и при увеличении массы самолетов возникают трудности в управлении: для отклонения рулей пилоту приходится прикладывать большую силу к ручке управления. Для ее уменьшения к элеронам, рулям высоты и направления прикрепляют триммеры - небольшие поверхности, отклоняющиеся в нужную сторону вращением специального штурвала независимо от положений руля.

Есть и другие способы облегчения управления самолетом. На тяжелых и скоростных самолетах применяют специальные устройства, увеличивающие во много раз силы, прикладываемые летчиком к ручке управления, - бустеры или гидроусилители. Действуют они по принципу гидравлического пресса.

Шасси служит для перемещения самолета по земле, разбега при взлете и пробега после посадки. На современных самолетах наиболее распространено трехколесное шасси с носовым колесом. Две главные стойки расположены под крылом, сзади ЦТ самолета, третья - в носовой части фюзеляжа. Такое шасси обеспечивает хорошую устойчивость самолета при разбеге и пробеге, допускает энергичное торможение.

На некоторых самолетах применяют трехколесное шасси с хвостовым колесом. Основные стойки крепятся на крыле впереди ЦТ. Бывают шасси велосипедного типа, когда стойки с колесами расположены одна за другой, как у двухколесного велосипеда. Для уменьшения сопротивления воздуха шасси делают убирающимися. На шасси гидросамолетов вместо колес устанавливают поплавки.

Для полета самолета необходима сила тяги, направленная вперед. Сила тяги создается воздушным винтом, установленным на коленчатом валу двигателя внутреннего сгорания. Авиационный двигатель - это "сердце" самолета. Эти двигатели работают почти так же, как и автомобильные, только они гораздо мощнее.

При вращении воздушный винт ввинчивается в воздух и тянет за собой самолет. Возможности применения двигателей внутреннего сгорания ограничены - они способны создавать силу тяги до скоростей полета 700-800 км/ч. Поэтому на скоростных самолетах устанавливают реактивные двигатели. Простейший реактивный двигатель - пороховая ракета, у которой газы, образующиеся во время горения топлива, с высокой скоростью выбрасываются назад. Сила отдачи, появляющаяся при этом, и есть сила тяги.

В настоящее время на самолетах широко применяют турбореактивные двигатели, работающие по такому же принципу, как и пороховая ракета, только вместо пороха в камере сгорания непрерывно горит смесь паров керосина с воздухом. Для увеличения силы тяги реактивного двигателя надо повысить скорость выбрасывания газов из камеры сгорания. Для этого воздух, прежде чем он попадет в камеру сгорания, сжимают в компрессоре, на одном валу с которым расположена газовая турбина. Компрессор подает в камеру сгорания воздух одновременно с поступающим топливом. Образующаяся смесь горит непрерывно, воздух нагревается до высокой температуры, повышается давление. Вырываясь из камеры сгорания с большой скоростью, газы создают силу тяги и попутно приводят во вращение турбину и компрессор. Если на вал посадить еще воздушный винт, получится турбовинтовой двигатель.

Турбовинтовые двигатели используют на самолетах Ан-12, Ан-24, Ил-18. Турбореактивными двигателями снабжены самолеты Ту-154, Як-40, Як-42, Ил-62, Ил-86.

Схематическая модель самолета. Это летающая модель, схематически воспроизводящая самолет. Она имеет рейку-фюзеляж, крыло, оперение и винтомоторную группу (воздушный винт и резиновый двигатель). Как и у модели планера, крыло создает подъемную силу, которая возникает только при его движении в воздухе.

Необходимую силу тяги для движения модели создает воздушный винт, вращаемый раскручивающейся резиной. Продолжительность его работы у схематических моделей около 1 мин.

Сила тяги - величина непостоянная. В первый момент она велика, к концу работы уменьшается. В зависимости от силы тяги винта меняется и скорость полета модели.

На схематическую модель (при работе двигателя), так же как и на самолет в полете, действуют четыре силы (рис. 23): сила тяжести G, подъемная Y, тяги Р и лобового сопротивления X. Подъемной силе противодействует сила тяжести, которая тянет модель вниз; сила сопротивления воздуха противодействует силе тяги, обеспечивающей движение модели вперед. При конструировании модели следует правильно рассчитать эти силы. Необходимо уменьшить силу сопротивления и массу модели, увеличив силу тяги и подъемную силу крыла. Увеличить подъемную силу можно, применив более вогнутый профиль и подобрав наивыгоднейший угол атаки.

Важной характеристикой любого летательного аппарата тяжелее воздуха (как самолета, так и модели) является аэродинамическое качество - К. Оно равно отношению подъемной силы к силе лобового сопротивления: K = Y/X. Аэродинамическое качество показывает, во сколько раз подъемная сила крыла больше силы сопротивления модели.

Силу тяги увеличивают, уменьшив массу модели и повысив мощность резинового двигателя. Чтобы уменьшить массу модели, применяют легкие и прочные материалы. Аккуратное изготовление и качественная обработка поверхностей модели позволяют снизить силу лобового сопротивления.

Основными величинами при расчете схематической модели самолета является размах l и удлинение λ крыла (рис. 24).


Рис. 24. Соотношение размеров схематической модели самолета: S к - площадь крыла; b - длина хорды крыла; l ст - размах стабилизатора; S ст - площадь стабилизатора; D в - диаметр винта; S к - площадь киля

При постройке основных частей моделей желательно выдерживать следующие соотношения масс: фюзеляж - 34% от массы модели, крыло - 20%, винт - не более 20%, резиновый двигатель - 20%, оперение - 6%. Нетрудно рассчитать массу модели при минимальной удельной грузоподъемности несущей поверхности (5 г/дм 2).

Конструировать модель рекомендуем в такой последовательности: выбор схемы, размаха крыла и основных размеров, вычисление площадей поверхности крыла, стабилизатора, киля, определение массы по минимальной удельной грузоподъемности, расчет воздушного винта, составление рабочего чертежа.

Размах крыла схематической модели выбирают от 700 до 850 мм.

Рассчитаем схематическую модель самолета с размахом крыла 800 мм. Удлинение крыла λ = l/b для таких моделей принимают равным 5-8. Для нашего случая возьмем 7. Тогда длина хорды крыла b = l/λ = (800/7) мм = 114 мм. Округлим значение до ПО мм. Выбираем прямоугольную форму крыла в плане с закруглениями на концах. Тогда площадь крыла S кp = l×b = (800×110) мм 2 = 88000 мм 2 = 8,8 дм 2 . С учетом закруглений площадь будет около 8,7 дм 2 .

S ст = 1/3 S кp = 2,9 дм 2 . Размах стабилизатора с учетом λ ст = 3-3,5 берем равным 290 мм, а ширина получается равной 100 мм. Площадь киля S к = 1/3 S ст ≈ 1 дм 2 .

Диаметр винта возьмем 250 мм. Наибольшая ширина лопасти составляет 10% от диаметра - 25 мм, а высота заготовки для винта порядка 8%-20 мм.

Длину рейки-фюзеляжа берем равной размаху крыла - 800 мм. Остается выполнить эскиз и рабочий чертеж. В процессе работы над ними каждый кружковец может вносить изменения в параметры модели, но они не должны превышать 5-10%.

Изготовлять схематическую модель самолета (рис. 25) рекомендуется в таком порядке. Фюзеляж делают из прямослойной без сучков и задиров сосновой или липовой рейки длиной 800 мм, сечением 12 X 10 мм, к хвостовой части сечение можно уменьшить до 8X6 мм.


Рис. 25. Рабочий чертеж (а) и порядок изготовления схематической модели самолета (б): 1 - склеивание "на ус"; 2 - вклеивание нервюр; 3 - крепление стабилизатора; 4 - изготовление винта; 5 - изготовление резинового двигателя

Сечение передней и задней кромок стабилизатора 4 X 3 мм, закругления выгибают из бамбуковой рейки сечением 3 X 2 мм, соединяют с кромками "на ус" клеем, места соединения обматывают нитками. Жесткость увеличивают тремя нервюрами сечением 2X2 мм. По чертежу отмечают середину стабилизатора и закрепляют его на хвостовой части фюзеляжа, предварительно - вырезав в нем небольшие углубления под кромки стабилизатора.

Киль изгибают из бамбуковой рейки и вставляют в отверстие фюзеляжа, просверленное немного ближе передней кромки стабилизатора.

К передней части фюзеляжа снизу приклеивают липовый брусок размером 25 X 20 X10 мм и обматывают нитками. Это будет подшипник; в нем сверлят отверстие диаметром 1,5 мм под вал винта.

Для кромок крыла берут сосновые рейки сечением 5 X 4 мм и изгибают их в середине под углом 10°. Бамбуковые закругления крепят к кромкам так же, как на стабилизаторе. Нервюры изготавливают, из сосновых реек сечением 3X2 мм; концы их заостряют "лопаткой" и вставляют с клеем в проколы кромок. Кабанчик для крепления крыла к фюзеляжу вырезают из липового бруска. Следует помнить, что передняя кромка должна быть выше задней на 8-10 мм. Привязывают кабанчик к крылу нитками.

Воздушный винт - самая сложная часть схематической модели самолета. Его изготовляют из бруска липы, ольхи или осины размером 250 X 25 X 20 мм. На широкой грани бруска проводят две взаимно перпендикулярные осевые линии, в центре сверлят отверстие диаметром 1 мм. Накладывают фанерный или целлулоидный шаблон вида сверху, совмещая осевые линии и очерчивая одну лопасть, затем поворачивают шаблон на 180° вокруг оси и наносят контуры другой лопасти. Острым ножом срезают лишнюю часть бруска и обрабатывают поверхность напильником. На одну из боковых граней накладывают шаблон вида сбоку, очерчивают его карандашом и срезают лишнюю часть. В дальнейшем винт обрабатывают с верхнего правого края каждой лопасти. Верхняя поверхность лопастей должна быть слегка выпуклой, а нижняя - плоской или немного вогнутой. Вогнутость получают, соскабливая древесину осколком стекла или полукруглым напильником. Зачищают лопасти шлифовальной шкуркой, одновременно центрируя винт. Для этого надевают его на тонкую проволоку и вращают. Если масса лопастей сбалансированного винта одинакова, он остановится в горизонтальном положении. Если этого не произошло, необходимо обработать опускающуюся лопасть напильником или зачистить шлифовальной шкуркой и вновь проверить центровку винта, добиваясь равновесия. Готовый винт покрывают 2-3 слоями нитролака. В ступице винта закрепляют вал из стальной проволоки диаметром 1,5 мм, надевают на него две шайбы и вставляют в подшипник. Свободный конец вала изгибают в виде крючка для крепления резинового двигателя. Другой крючок для резинового двигателя крепят в хвостовой части фюзеляжа на расстоянии 600 мм от подшипника.

Обтягивают модель самолета так же, как и модель планера - папиросной или микалентной бумагой. Крыло обтягивают только сверху в два приема: сначала одну половину (консоль), потом другую.

Стабилизатор оклеивают только сверху, а киль с обеих сторон. Бумагу, выступающую за кромки, счищают шлифовальной шкуркой или срезают острым ножом.

Резиновый двигатель длиной 600 мм изготовляют из ленточной резины сечением 2 X 1 мм следующим образом: в доску вбивают два гвоздя на расстоянии, равном длине резинового двигателя; резиновую нить массой 30 г обматывают вокруг гвоздей, свободные концы связывают; в местах крепления двигатель перевязывают тонкой резинкой.

Готовый резиновый двигатель промывают теплой мыльной водой, просушивают вдали от источников тепла, смазывают касторовым маслом и упаковывают на несколько дней в темную стеклянную банку. Непосредственно перед использованием резиномотор надо промыть и просушить.

Для определения максимального числа витков двигателей следует закрутить один из них до его разрыва. Зная возможности резиновых двигателей данной длины, можно провести их динамическую формовку. Один из наиболее простых способов формовки заключается в последовательном закручивании и раскручивании резинового двигателя: сначала двигатель закручивают на 20% допустимого числа витков, затем добавляют еще 10-15%, заканчивают формовку закруткой на 80-85% от максимального числа витков. После этого резиновый двигатель снова промывают теплой мыльной водой, просушивают, смазывают касторовым маслом и упаковывают в полиэтиленовый пакет или стеклянную банку. Выдержав одну-две недели, резиновый двигатель можно использовать на соревнованиях.

Регулировку модели проводят следующим образом. Сначала проверяют, нет ли перекосов при видах на модель сверху и спереди. Перемещением крыла вдоль рейки устанавливают центр тяжести модели с резиновым двигателем на расстоянии 1/3 длины хорды крыла от передней кромки.

Добившись правильной центровки, регулируют модель на планирование, т. е. без работы винта, так же как и схематическую модель планера. Держа модель одной рукой за фюзеляж, немного наклонив носовую часть вниз, плавным движением пускают ее. Если модель "задирает нос", крыло передвигают к стабилизатору. При крутом опускании - пикировании модели - крыло перемещают вперед. Хорошо отрегулированная модель должна пролетать 8-12 м.

Более сложный этап - это регулировка моторного полета. Закрутив резиновый двигатель на 50-60 витков, берут модель за фюзеляж правой рукой, а левой придерживают винт. Легким толчком опускают модель горизонтально. Повторяют запуск модели несколько раз, постепенно увеличивая число витков двигателя.

Сложность регулирования модели самолета заключается в том, что при моторном полете (с раскручивающимся винтом) возникают некоторые новые отклонения по сравнению с планирующим полетом. Ниже приведены основные из них.

Модель, планирующая по прямой, кружит в моторном полете, стремясь повернуть в левую сторону (вращение винта вправо по направлению полета). Это вызвано влиянием силы реакции от вращения винта, зависящей от его частоты вращения и диаметра. Авиамоделисты исправляют этот дефект смещением (отклонением) вала винта вправо. Модель может летать кругами со снижением и по другим причинам: из-за несимметричного распределения масс, различной кривизны профиля нервюр у обеих половин крыла и т. д.

Иногда при малой закрутке резинового двигателя модель летит хорошо, а при большой не набирает высоты. Причина - слабая рейка-фюзеляж: сильно закрученный двигатель сгибает ее. В этом случае рекомендуется поставить сверху растяжки или заменить рейку более прочной.

В том случае, если модель в моторном полете трясет (и чем больше закрутка резинового двигателя, тем сильнее), сказывается дисбаланс лопастей воздушного винта или неверный изгиб крючка вала винта.

Если после запуска модель стремительно набирает высоту и пытается сделать петлю, необходимо увеличить угол наклона вала (оси) винта вниз. А если модель медленно набирает высоту - уменьшить угол наклона вала винта.

Регулировать моторный полет лучше смещением вала (оси) винта, а планирующий - передвижением крыла вдоль фюзеляжа (изменением центровки), изменением угла атаки крыла.

Схематическая модель самолета П. Павлова (рис. 26) намного сложнее описанной выше; с ней можно успешно выступать на соревнованиях.

Рейка-фюзеляж 2 склеена из двух облегченных внутри половин. В передней части рейки закреплен подшипник с усиливающей металлической пластиной. Отверстие под вал винта смещено вниз на 3°.

Стабилизатор 5 изготовлен из бамбуковых реек различного сечения, профиль нервюр вогнутый. Крепят стабилизатор к хвостовой части фюзеляжа нитками с клеем.

Киль 4 бамбуковый, его крепят на рейке немного впереди стабилизатора. Регулируют направление полета перекосом киля.

Передняя и задняя кромки крыла выполнены из бамбуковых реек сечением 4 X 3 мм в центре и 3 X 2 мм на концах. Законцовки из бамбуковых реек сечением 2,0 X 1,5 мм изогнуты на спиртовке. Места соединения их с кромками срезаны "на ус", смазаны клеем и обмотаны нитками. Сечение реек для нервюр 2,0 X 1,5 мм, наибольший их прогиб 10 мм. Вставляют нервюры с клеем в проколы кромок. Кабанчик 8 крыла изготовлен из липового бруска размером 170 X 15 X 8 мм.

Воздушный винт 1 складывающийся, лопасти из липы. После изготовления его разрезают пополам и крепят лопасти на шарнирах к ступице. Для шарнирных соединений используют жесть толщиной 0,5 мм. Вал винта из проволоки ОВС диаметром 1,5 мм; пружина стопора, фиксирующего винт в определенном положении, из проволоки диаметром 0,5 мм, число витков 5.

Двигатель состоит из 30 резиновых нитей сечением 1 X 1 мм.

Модель оклеивают папиросной бумагой.

С моделями такого типа проводят соревнования на продолжительность полета. Число полетов оговаривается в положении о соревнованиях (обычно не более пяти). Время полета в одном туре не более 2 мин. Старт модели - с рук. Время полета фиксируют с момента выпуска модели из рук до посадки или того момента, когда модель скроется из вида.